Referat.me

Название: Вычисление двойных интегралов методом ячеек

Вид работы: реферат

Рубрика: Математика

Размер файла: 54.41 Kb

Скачать файл: referat.me-215394.docx

Краткое описание работы: МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Чувашский государственный университет им. И. Н. Ульянова КУРСОВАЯ РАБОТА по вычислительной математике.

Вычисление двойных интегралов методом ячеек

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Чувашский государственный университет им. И. Н. Ульянова

КУРСОВАЯ РАБОТА

по вычислительной математике.

Вычисление двойных интегралов методом ячеек.

Выполнил студент

факультета ИиВТ,

группа ИВТ-11-00

Борзов Леонид

Чебоксары-2002

Содержание.

Теоретическая часть…………………………………………3

Задание………………………………………………………..4

Текст программы. ……………………………………………5

Блок-схема программы…………………….………………...6

Выполнение программы в математическом пакете………..7

Список использованной литературы……………………......8

Теоретическая часть.

Численные методы могут использоваться для вычисления кратных интегралов. Ограничимся рассмотрением двойных интегралов вида

I = (1)

Одним из простейших способов вычисления этого интеграла является метод ячеек . Рассмотрим сначала случай, когда областью интегрирования G является прямоугольник: , .По теореме о среднем найдём среднее значение функции f ( x , y ) :

S =( b - a )( d - c ). (2)

Будем считать, что среднее значение приближённо равно значению функции в центре прямоугольника, т. е. . Тогда из (2) получим выражение для приближённого вычисления двойного интеграла:

(3)

Точность этой формулы можно повысить, если разбить область G на прямоугольные ячейки Dij (рис. 1): xi -1 i (i =1,2,…,M), yi -1 i (j =1,2,…,N). Применяя к каждой ячейке формулу (3), получим

òòD Gij f ( x , y ) dxdy » ¦ ( ) D xi D yi .

Суммируя эти выражения по всем ячейкам, находим значение двойного интеграла:

I , j ) (4)

В правой части стоит интегральная сумма; поэтому при неограниченном уменьшении периметров ячеек (или стягивания их в точки) эта сумма стремится к значению интеграла для любой непрерывной функции f ( x , y ) .

Можно показать, что погрешность такого приближения интеграла для одной ячейки оценивается соотношением

Rij » D xi D yj .

Суммируя эти выражения по всем ячейкам и считая все их площади одинаковыми, получаем оценку погрешности метода ячеек в виде

O ( D x 2 + D y 2 ) .

Таким образом, формула (4) имеет второй порядок точности. Для повышения точности можно использовать обычные методы сгущения узлов сетки. При этом по каждой переменной шаги уменьшают в одинаковое число раз, т. е. отношение M / N остаётся постоянным.

Если область G непрямоугольная, то в ряде случаев её целесообразно привести к прямоугольному виду путём соответствующей замены переменных. Например, пусть область задана в виде криволинейного четырёхугольника: , . Данную область можно привести к прямоугольному виду с помощью замены , . Кроме того, формула (4) может быть обобщена и на случай более сложных областей.

Задание .Найти при помощи метода ячеек значение интеграла , где – область, ограниченная функциями .

Текст программы.

#include<conio.h>

#include<iostream.h>

float f(float,float);

void main() {

const float h1=.0005,h2=.001;

float s1,x,y,i,I;

clrscr();

s1=h1*h2;

I=0;

y=h2/2;

x=1-h1/2;

for(i=0;i<1/h2;i++) {

while (y<2*x-1) {

I+=s1*f(x,y);

x-=h1;

}

y+=h2;

x=1-h1/2;

}

cout<<"Площадь интеграла равна: "<<I;

getch();

}

float f(float x,float y){

return x*x+y*y;

}

Блок-схема программы.

x=1-h1/2

Выполнение программы в математическом пакете.

h1=.0005;

h2=.001;

s1=h1*h2;

I=0;

y=h2/2;

x=1-h1/2;

for i=1:1/h2

while y<2*x-1 I=I+s1*(x*x+y*y);

x=x-h1;

end

y=y+h2;

x=1-h1/2;

end

disp('Площадь интеграла равна:');

disp(I);

В зависимости от шагов сетки получаем с различной точностью значение искомого интеграла

Площадь интеграла равна:

0.2190

Список использованной литературы.

1. Бахвалов Н.С. Численные методы. т.1 – М.: Наука. 1975.

2. Демидович Б.П., Марон И.А. Основы вычислительной математики. – М.: Наука, 1966.

3. Калиткин Н.Н Численные методы. – М.: Наука, 1978.

4. Турчак Л. И. Основы численных методов. – М.: Наука, 1987.

Похожие работы

  • Колебательно движение материальной точки

    Министерство образования и науки Российской Федерации Санкт-Петербургский государственный горный институт имени В.Г. Плеханова (технический университет)

  • Математическая логика и теория алгоритмов 3

    МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

  • Поиск кратчайшего пути передвижения слона по шахматному полю

    Министерство образования и науки Российской Федерации Агентство по образованию Тихоокеанский Государственный Экономический Университет Экономический институт

  • Приближенное вычисление определенных интегралов

    Магнитогорский Государственный технический университет Приближенное вычисление определенных интегралов. Формула парабол (формула симпсона) Подготовил: Студент группы ФГК-98 Григоренко М.В.

  • Вычисление корней нелинейного уравнения

    Министерство образования Российской федерации Южно-Уральский Государственный Университет Аэрокосмический факультет Кафедра летательных аппаратов

  • Вычисление координат центра тяжести плоской фигуры

    Министерство общего и профессионального образования Российской федерации. Уральский Государственный Технический Университет - УПИ. Реферат ВЫЧИСЛЕНИЕ КООРДИНАТ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ.

  • Дифференциальные уравнения для электрической цепи

    Министерство Образования Российской Федерации ИрГТУ Кафедра АПП Курсовая работа по математике Выполнил: студент группы АТП-05-1 Поверил: профессор

  • по Математике и информатике

    Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Самарский государственный университет»

  • Однополостный гиперболоид

    Министерство высшего образования Российской Федерации Московский государственный строительный университет РЕФЕРАТ На тему: “Однополостный гиперболоид”

  • Графы Основные понятия

    Министерство образования и науки Российской Федерации Курский государственный технический университет Кафедра ПО ВТ и АС Лабораторная работа № 1 Графы. Основные понятия