Referat.me

Название: Интегралы. Функции переменных

Вид работы: контрольная работа

Рубрика: Математика

Размер файла: 85.17 Kb

Скачать файл: referat.me-215646.docx

Краткое описание работы: Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.

Интегралы. Функции переменных

Вариант 2

I. Вычислить интегралы

Преобразуем подынтегральное выражения с целью его непосредственного интегрирования:

Найдем А и В:

Отсюда видно что А и В являются решением системы:

Решим эту систему и найдем А и В:


Итак, A=3/5, B=7/5, зная эти коэффициенты, вычисляем интеграл.

с помощью замены переменных

Введем и возьмем соответствующий неопределенный интеграл:

Возвращаемся к x:

Теперь вычисляем определенный интеграл:


Итак,

3.методом интегрирования по частям

Итак,

II. Функции многих переменных

1. Найти частные производные 1-го порядка

2. Исследовать на экстремум функцию


Найдем частные производные

Найдем все стационарные точки функции, точки в которых должны выполняться условия: ,

Это равносильно следующему:

Вторая система не имеет вещественного корня

t= 0 t=1

y=1 y=-1


x=1

M0(0;0) и M1(1;1) – стационарные точки данной функции.

Теперь определим характер этих стационарных точек.

Найдем частные производные второго порядка этой функции.

В точке M0(0;0):

Так как <0, то экстремума в точке M0(0;0) нет.

В точке M1(1;1):

Так как >0,A>0,C>0 то точка M1(1;1) это точка экстремума,

Причем этот экстремум-минимум.


III. Решить дифференциальные уравнения.

1. Решить уравнение с разделяющимися переменными

Интегрируем правую и левую части уравнения:

После некоторых преобразований выражаем решение уравнения:

2. Решить линейное уравнение 1-го порядка

Ищем решение уравнения в виде произведения двух функций:

При этом:


После подстановки в исходное уравнение имеем:

Чтобы коэффициент при u обратился в 0, в качестве v выбираем функцию удовлетворяющую уравнению:

Найдем функцию u, которая должна удовлетворять уравнению:

:

Решение запишется в виде:


3

Это неоднородное линейное дифференциальное уравнение второго порядка. Его решение ищем в виде:

, где - общее решение соответствующего однородного уравнения, - частное решение.

Найдем

Решим однородное дифференциальное уравнение

Характеристическое уравнение для него:

Это квадратное уравнение

d=36-100=-64 – дискриминант отрицательный, корни комплексные:

k1=3-4i ; k2=3+4i

Общее решение, следовательно, имеет вид:

,

где - константы.

Ищем частное решение. Функция свободного члена имеет вид:


, где a=2,b=3,k=1,p=-6,q=25

При этом , следовательно, частное решение ищем в виде:

Находим его производные первого и второго порядка и подставляем в уравнение:

Для нахождения коэффициентов А и В решим систему:

A=0,07, B=0,16

Таким образом, окончательное решение уравнения имеет вид:


IV. Ряды

1. Исследовать на сходимость ряд с положительными членами

Рассмотрим ряд:

Это степенной ряд с основанием меньшим 1, а он заведомо сходится.

Теперь сравним члены ряда с членами ряда

при n>4 , значит ряд также сходится.

2. Исследовать на абсолютную и условную сходимость ряд:

Исследуем на абсолютную сходимость (сходимость ряда, состоящего из модулей членов знакопеременного ряда) значит необходимый признак сходимости выполняется.

,


Сравним член этого ряда с членом заведомо расходящегося гармонического ряда:

, следовательно наш ряд расходится абсолютно.

Исследуем ряд на условную сходимость:

Так как условия признака Лейбница выполнены

данный ряд сходится условно.

3. Найти область сходимости функционального ряда

, перепишем его в виде:

Член данного ряда представляет собой член степенного ряда, помноженный на член гармонического ряда.

Для расходящегося гармонического ряда выполняется однако основной признак сходимости (его член стремится к нулю), так что сходимость функционального ряда определяется сходимостью степенного ряда: , причем при любом x это будет знакопостоянный ряд.

Cтепенной же ряд сходится когда его член по модулю <1:


Решаем это модульное неравенство и находим область сходимости функционального ряда :

Итак, область сходимости функционального ряда :

Похожие работы

  • Лекции по математическому анализу

    Определение функций нескольких переменных. Предел и непрерывность функции. Частные производные и полный дифференциал.

  • Особое решение дифференциальных уравнений первого порядка

    Введение Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

  • Функции нескольких переменных

    Высшая математика Функции нескольких переменных Содержание 1. Понятие функции двух и более переменных 2. Предел и непрерывность функции двух переменных

  • Численные методы

    Подавляющее большинство процессов реального мира носит линейный характер. Область, использования линейных моделей ограничена, в то же время для построения нелинейных моделей хорошо разработан математический аппарат. Методо МНК для линейной функции.

  • Решение дифференциальных уравнений

    Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.

  • Дифференциальные уравнения

    Основные понятия и определения.

  • Математический анализ

    Определение функции нескольких переменных, Нахождение частных производных, Полный дифференциал ф-ции 2-х переменных

  • Модели и методы принятия решений

    Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.

  • Интегралы, объем тела вращения, метод наименьших квадратов

    Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.

  • Определение интегралов

    Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычислить по формуле Ньютона-Лейбница определенный интеграл. Вычисление площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.