Название: Исторические сведения о развитии тригонометрии
Вид работы: реферат
Рубрика: Математика
Размер файла: 13.79 Kb
Скачать файл: referat.me-216881.docx
Краткое описание работы: ИСТОРИЧЕСКИЕ СВЕДЕНИЯ О РАЗВИТИИИ ТРИГОНОМЕТРИИ Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась изучалась как один из отделов астрономии.
Исторические сведения о развитии тригонометрии
ИСТОРИЧЕСКИЕ СВЕДЕНИЯ О РАЗВИТИИИ ТРИГОНОМЕТРИИ
Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась изучалась как один из отделов астрономии.
Насколько известно: способы решения треугольников (сферических) впервые были письменно изложены греческим астрономом Гиппархом в середине 2 века до н.э. Наивысшими достижениями греческая тригонометрия обязана астроному Птоломею (2 век н.э.), создателю геоцентрической системы мира, господствовавшей до Коперника.
Греческие астрономы не знали синусов, косинусов и тангенсов. Вместо таблиц этих величин они употребляли таблицы: позволяющие отыскать хорду окружности по стягиваемой дуге. Дуги измерялись в градусах и минутах ; хорды тоже измерялись градусами (один градус составлял шестидесятую часть радиуса), минутами и секундами. Это шестидесятеричное подразделение греки заимствовали у вавилонян.
Значительные высоты достигла тригонометрия и у индийских средневековых астрономов. Главным достижением индийских астрономов стала замена хорд синусами, что позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом в Индии было положено начало тригонометрии как учению о тригонометрических величинах.
Индийские ученые пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражается как
2 2
sina + cos a = 1,
sin a = cos (90 - a)
sin ( a + B)= sin a . cos B + cos a . sin B.
Индийцы также знали формулы для кратких углов sin na , cos na, где n=2,3,4,5.
Тригонометрия необходима для астрономических расчетов которые оформляются в виде таблиц. Первая таблица синусов имеется в «Сурья-сиддханте» и у Ариабхаты. Она приведена через 3 45. Позднее ученые составили более подробные таблицы: например Бхаскара приводит таблицу синусов через 1 .
Южноиндийские математики в 16 веке добились юольщих успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа П. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате «Каранападдхати»(«Техника вычислений») даны правила разложения синуса и косинуса в ьесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лищь в 17-18 веках. Так, ряды для синуса и косинуса вывел И.Ньютон около 1666 г., а ряд арктангенса был найден Дж Грегори в 1671 г. и Г.В.Лейбницем в 1673 г.
В 8 в ученые стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский ученый аль-Хорезми написал сочинение «Об индийском счете». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.
Похожие работы
-
История возникновения тригонометрии
Работу выполнили ученицы 10 «Э» класса Гимназии №1 Ермошкина Елизавета, Коношенко Евгения. Тригонометрия -математическая дисциплина изучающая зависимость между сторонами и углами треугольника.
-
Тригонометрические функции 2
Тригонометрия – математическая дисциплина, изучающая зависимость между сторонами и углами треугольника, является разделом геометрии , тригонометрические функции являются объектом изучения математического анализа, а тригонометрические уравнения изучаются методами алгебры.
-
История математики: Вавилон и Египет
Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю.
-
Формулы тригонометрии
tg(α+β)=(tgα+tgβ)/(1–tgα·tgβ); tg(α-β)=(tgα–tgβ)/(1+tgα·tgβ) ctg(α+β)=(ctgα·ctgβ–1)/(ctgβ+ctgα); ctg(α+β)=(ctgα·ctgβ+1)/(ctgβ–ctgα)
-
История тригонометрии в формулах и аксиомах
Тригонометрические функции Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (
-
Астрономия
Астрономия — наука о Вселенной и населяющих ее объектах: планетах, звездах и гигантских звездных системах — галактиках. Название этой древней науки, изучающей небесные тела, образовано от греческих слов "астрон" — звезда и "номос" — закон.
-
Шпаргалка по математике
Основные формулы по алгебре, геометрии и тригонометрии.
-
История тригонометрии
Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю).
-
Теоремы тригонометрии
Содержание: I Введение 3 Вступление 3 Треугольники 4 II Основная часть 8 Общие сведения о тригонометрических функциях 8 Теоремы 14 Теорема о площади треугольника: 14
-
История математики: Классическая Греция
С точки зрения XX в. родоначальниками математики явились греки классического периода (VI-IV вв. до н.э.). Математика, существовавшая в более ранний период, была набором эмпирических заключений.