Referat.me

Название: Исторические сведения о развитии тригонометрии

Вид работы: реферат

Рубрика: Математика

Размер файла: 13.79 Kb

Скачать файл: referat.me-216881.docx

Краткое описание работы: ИСТОРИЧЕСКИЕ СВЕДЕНИЯ О РАЗВИТИИИ ТРИГОНОМЕТРИИ Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась изучалась как один из отделов астрономии.

Исторические сведения о развитии тригонометрии

ИСТОРИЧЕСКИЕ СВЕДЕНИЯ О РАЗВИТИИИ ТРИГОНОМЕТРИИ

Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась изучалась как один из отделов астрономии.

Насколько известно: способы решения треугольников (сферических) впервые были письменно изложены греческим астрономом Гиппархом в середине 2 века до н.э. Наивысшими достижениями греческая тригонометрия обязана астроному Птоломею (2 век н.э.), создателю геоцентрической системы мира, господствовавшей до Коперника.

Греческие астрономы не знали синусов, косинусов и тангенсов. Вместо таблиц этих величин они употребляли таблицы: позволяющие отыскать хорду окружности по стягиваемой дуге. Дуги измерялись в градусах и минутах ; хорды тоже измерялись градусами (один градус составлял шестидесятую часть радиуса), минутами и секундами. Это шестидесятеричное подразделение греки заимствовали у вавилонян.

Значительные высоты достигла тригонометрия и у индийских средневековых астрономов. Главным достижением индийских астрономов стала замена хорд синусами, что позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом в Индии было положено начало тригонометрии как учению о тригонометрических величинах.

Индийские ученые пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражается как

2 2

sina + cos a = 1,

sin a = cos (90 - a)

sin ( a + B)= sin a . cos B + cos a . sin B.

Индийцы также знали формулы для кратких углов sin na , cos na, где n=2,3,4,5.

Тригонометрия необходима для астрономических расчетов которые оформляются в виде таблиц. Первая таблица синусов имеется в «Сурья-сиддханте» и у Ариабхаты. Она приведена через 3 45. Позднее ученые составили более подробные таблицы: например Бхаскара приводит таблицу синусов через 1 .

Южноиндийские математики в 16 веке добились юольщих успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа П. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате «Каранападдхати»(«Техника вычислений») даны правила разложения синуса и косинуса в ьесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лищь в 17-18 веках. Так, ряды для синуса и косинуса вывел И.Ньютон около 1666 г., а ряд арктангенса был найден Дж Грегори в 1671 г. и Г.В.Лейбницем в 1673 г.

В 8 в ученые стран Ближнего и Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский ученый аль-Хорезми написал сочинение «Об индийском счете». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

Похожие работы

  • История возникновения тригонометрии

    Работу выполнили ученицы 10 «Э» класса Гимназии №1 Ермошкина Елизавета, Коношенко Евгения. Тригонометрия -математическая дисциплина изучающая зависимость между сторонами и углами треугольника.

  • Тригонометрические функции 2

    Тригонометрия – математическая дисциплина, изучающая зависимость между сторонами и углами треугольника, является разделом геометрии , тригонометрические функции являются объектом изучения математического анализа, а тригонометрические уравнения изучаются методами алгебры.

  • История математики: Вавилон и Египет

    Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю.

  • Формулы тригонометрии

    tg(α+β)=(tgα+tgβ)/(1–tgα·tgβ); tg(α-β)=(tgα–tgβ)/(1+tgα·tgβ) ctg(α+β)=(ctgα·ctgβ–1)/(ctgβ+ctgα); ctg(α+β)=(ctgα·ctgβ+1)/(ctgβ–ctgα)

  • История тригонометрии в формулах и аксиомах

    Тригонометрические функции Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников ( 

  • Астрономия

    Астрономия — наука о Вселенной и населяющих ее объектах: планетах, звездах и гигантских звездных системах — галактиках. Название этой древней науки, изучающей небесные тела, образовано от греческих слов "астрон" — звезда и "номос" — закон.

  • Шпаргалка по математике

    Основные формулы по алгебре, геометрии и тригонометрии.

  • История тригонометрии

    Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю).

  • Теоремы тригонометрии

    Содержание: I Введение 3 Вступление 3 Треугольники 4 II Основная часть 8 Общие сведения о тригонометрических функциях 8 Теоремы 14 Теорема о площади треугольника: 14

  • История математики: Классическая Греция

    С точки зрения XX в. родоначальниками математики явились греки классического периода (VI-IV вв. до н.э.). Математика, существовавшая в более ранний период, была набором эмпирических заключений.