Название: Задача на собственные значения для вырождающегося уравнения смешанного типа
Вид работы: статья
Рубрика: Математика
Размер файла: 82.03 Kb
Скачать файл: referat.me-218087.docx
Краткое описание работы: Сабитов К.Б., Бибакова С.Л. 1. Постановка задачи. Рассмотрим уравнение: l - комплексный параметр, в области D, ограниченный при кривой с концами в точках B (1, 0) и K (0, 1/4), лежащей в первом квадранте, отрезком AK оси OY, где A=(0, 0), и характеристиками AC (
Задача на собственные значения для вырождающегося уравнения смешанного типа
Задача на собственные значения для вырождающегося уравнения смешанного типа
Сабитов К.Б., Бибакова С.Л.
1. Постановка задачи. Рассмотрим уравнение:
(1)
где l - комплексный параметр, в области D, ограниченный при
кривой
с концами в точках B (1, 0) и K (0, 1/4), лежащей в первом квадранте, отрезком AK оси OY, где A=(0, 0), и характеристиками AC (
) и CB (
) уравнения (1) при
.
Пусть
Задача Tl. Найти значения параметра и соответствующие им функции
, удовлетворяющие условиям:
(2)
(3)
(4)
(5)
где при
при
Выбор значения k таковым объясняется тем, что для уравнения (1) при доказаны теоремы существования и единственности решения задачи Трикоми [1].
Спектральные задачи для оператора Лаврентьева-Бицадзе были рассмотрены в работах [2-4].
В работах [5-8] изучены спектральные задачи для уравнения (1) с условиями Дирихле. В [5] для уравнения (1) в области эллиптичности построены решения первой краевой задачи и смешанной краевой задачи с помощью биортогональных рядов. В работе [6] уравнение (1) рассматривалось в D, где подобласть D+ ограничена отрезком NB оси y=0 , N=(-1, 0) , и дугой NB: а в работах [7-8] уравнение (1) изучалось в D при
В данной работе найдены в явном виде собственные значения и соответствующие собственные функции, которые отличаются от результатов [6].
2. Построение частных решений в области эллиптичности. В области D+ перейдем к новым переменным ,
В координатах
уравнение (1) примет вид:
где .
Разделяя переменные получим:
(6)
(7)
(8)
(9)
Известно [1], что решением уравнения (6) является функция Бесселя
(10)
Удовлетворяя (10) краевым условиям (7) и (8), имеем:
(11)
Теперь построим общее решение для уравнения (8). Для этого в (8) введем новую переменную Тогда оно примет вид:
(12)
Уравнение (12) является гипергеометрическим уравнением [9, с. 69], и поскольку a не является целым числом, то общее решение уравнения (8) определяется по формуле
(13)
Функция (13) удовлетворяет первому граничному условию из (9). Удовлетворим (13) второму краевому условию из (9).
(14)
На основании равенств [10, с. 112]
имеем уравнение для нахождения неизвестного :
(15)
В силу известных формул
имеем:
где
Тогда с учетом того, что и
равенство (15) примет вид:
(16)
Таким образом, в области D+ найдены частные решения уравнения (1), удовлетворяющие краевому условию (3):
(17)
3. Построение частных решений в области гиперболичности. В уравнение (1) в области D- сделаем замену переменных Тогда в координатах
уравнение (1) примет вид:
Разделив переменные получим:
(18)
(19)
(20)
(21)
Решением уравнения (18) , удовлетворяющего условиям (19), является функция
(22)
Уравнение (20) так же, как и уравнение (12), является гипергеометрическим уравнением с аргументом . Переходя к аргументу
, построим его общее решение:
(23)
Если то функция (23) удовлетворяет граничным условиям (21). Тогда решением уравнения (20), удовлетворяющего условиям (21), будет:
Таким образом, в области D- найдены частные решения уравнения (1), удовлетворяющие граничному условию (4):
(24)
4. Построение собственных функций задачи Tl. Для нахождения собственных значений и собственных функций задачи Tl , построенную систему функций (17) и (24) удовлетворим условиям склеивания (2) и (5).
Из (17) и (24) вычислим:
Приравнивая функции
получим систему
из которой находим коэффициенты и
:
(25)
Найденные значения ,
подставим в равенство (16) и решим его относительно g. Потребуем, чтобы
,
. Тогда получим:
(27)
Поскольку , то уравнение (27) имеет место, если
Рассмотрим по отдельности случаи и
При уравнение (27) имеет решения
или
, где
. С учетом того, что
и
, решением (27) будет
При , решением (27) является
или
, где
. С учетом тех же условий получим:
По формулам (25) и (26) находим и
при найденных
:
где
Из теории бесселевых функций известно [10], что при функция
имеет только вещественные нули. Тогда, обозначая через
--m-ый корень уравнения (11), находим собственные значения задачи Tl:
Таким образом, построена система собственных функций задачи Tl:
Список литературы
Смирнов М.М. Уравнения смешанного типа. М., 1985.
Пономарев С.М. Спектральная теория основной краевой задачи для уравнения смешанного типа Лавретьева-Бицадзе. Автореферат диссертации … д-ра ф.-м. наук. М.: МГУ, 1981.
Моисеев Е.И. Уравнение смешанного типа со спектральным параметром. М.: МГУ, 1998.
Сабитов К.Б., Тихомиров В.В. О построении собственных значений и функций одной газодинамической задачи Франкеля // Математическое моделирование. 1990. Т. 2. № 10. С. 100-109.
Моисеев Е.И. о решении вырождающихся уравнений с помощью биортогональных рядов // Дифференц. уравнения. 1991. Т. 27. № 1. С. 94-103.
Мамедов Я.Н. О некоторых задачах на собственные значения для уравнения смешанного типа // Дифференц. уравнения. 1990. Т. 26. № 1. С. 163-168.
Сабитов К.Б., Вагапов В.З. О построении частных решений вырождающихся уравнений смешанного типа // Комплексный анализ, дифференц. уравнения и смежные вопросы: Тр. Международ. науч. конф. Уфа, 1996. С. 99-106
Вагапов В.З. построение частных решений одного уравнения смешанного типа // Тр. Всеросс. науч. конф. «Физика конденсированного состояния». Стерлитамак, 1997. Т. 1. С. 26-30.
Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. М.: Наука, 1973.
Ватсон Г.Н. Теория бесселевых функций. 1. М., 1949.
Похожие работы
-
Локальная и нелокальная задачи для уравнения смешанного типа второго порядка с оператором Геллестедта
Доказана однозначная разрешимость локальной и нелокальной краевых задач для нагруженных уравнений 2 порядка оператора Геллестедта.
-
Формулы по математическому анализу
Формулы дифференцирования Таблица основных интегралов Правила интегрирования Основные правила дифференцирования Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие
-
Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характерис
Езаова А.Г. Кафедра теории функций. Кабардино-Балкарский государственный университет В работе рассматривается нелокальная краевая задача для уравнения смешанного типа. Поставленная задача сводится к сингулярному интегральному уравнению, которое методом Карлемана-Векуа редуцируется к интегральному уравнению Фредгольма третьего рода.
-
Об одном аналоге задачи Бицадзе-Самарского для смешанно-составного уравнения
Бабаев Х. Об одном аналоге задачи Бицадзе-Самарского для смешанно-составного уравнения. РЕФЕРАТ В данной работе для смешанно-составного уравнения ставится и исследуется одна нелокальная краевая задача, которая является некоторым аналогом задачи Бицадзе-Самарского. Единственность решения изучаемой задачи доказывается принципом максимума, а существование решения доказывается сведением изучаемой задачи к эквивалентному ей интегральному уравнению.
-
Решения смешанной задачи для уравнения гиперболического типа методом сеток
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Р.Ф. КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра прикладной и высшей математики Лабораторная работа № 43
-
Уравнения смешанного типа
Исследование задачи Дирихле для вырождающегося уравнения смешанного типа в прямоугольной области методами спектрального анализа. Обоснование корректности постановки нелокальных начально-граничных задач различных вырождающихся дифференциальных уравнений.
-
Вычисление радиальных функций Матье-Ханкеля
Условия возникновения и особенности вычисления функций Матье, характеристика дифференциального уравнения Матье. Алгоритм решения задачи и алгоритмы вычисления радиальных функций эллиптического цилиндра. Определение точности результатов вычисления.
-
Эрмитовы операторы
Рассмотрение понятия тождественного (единичного) оператора. Анализ методов решения линейных однородного и неоднородного уравнений. Ознакомление с определением эрмитовости оператора. Доказательство теоремы о свойствах ортогональности собственных функций.
-
Решение задачи Дирихле для уравнения Лапласа методом сеток
ПОСТАНОВКА ЗАДАЧИ Решить численно задачу Дирихле для уравнения Лапласа : (x,y)D ; u|Г=xy2=f(x,y) ; область D ограничена линиями: x=2 , x=4 , y=x , y=x+4 ;
-
Квадратные формы
Лекция 10. Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.