Referat.me

Название: Математика матрица

Вид работы: реферат

Рубрика: Математика

Размер файла: 22.73 Kb

Скачать файл: referat.me-218220.docx

Краткое описание работы: Матрицы Матрица - прямоугольная (в частном случае квадратная) таблица с числами. Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.

Математика матрица

Матрицы

Матрица - прямоугольная (в частном случае квадратная) таблица с числами.

Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.

Пример матрицы 4×3 :

a 1,1

a 1,2

a 1,3

a 2,1

a 2,2

a 2,3

a 3,1

a 3,2

a 3,3

a 4,1

a 4,2

a 4,3

Определитель матрицы

Определитель матрицы A (обозначается как det A) это число, которое ставится в соответствие матрице A по определенному правилу.

Определитель существует (определен) только для квадратной матрицы.

Определителем квадратной матрицы A порядка n называется число:

det(A)=

=

где M1,j - определитель квадратной матрицы порядка n -1, полученной из матрицы A вычеркиванием первой строки и j -го столбца, называемый минором элемента a1,j .

Выражение

det A =



называется формулой вычисления определителя разложением по первой строке.
Число (-1) j+1 M1,j называется алгебраическим дополнением элемента a1,j .

Если вас пугает это формула, то она значит следующее:

  1. Определитель вычисляется как сумма n слагаемых, где n - порядок матрицы.
  2. Знак, с которым каждое слагаемое входит в сумму, определяется как (-1)1+k .
  3. Каждое слагаемое представляет собой произведение двух чисел: элемента первой строки матрицы на минор - определитель матрицы, получаемой из исходной путем вычеркивания 1 строки и j столбца.

Обратите внимание, что порядок минора на 1 меньше, чем у исходной матрицы!!!

Умножение матриц

Произведением матриц A размером m × n и матрицы B размера n × k называется матрица размера m × k, элементы которой определяются формулой

ci,j =

n

a i,q · b q,j

q=1

i=1, ... , m

j=1, ..., k

Произведение матриц записывается как C=A·B.

Произведение матриц определено, если число столбцов матрицы A равняется числу строк матрицы B!!!!

Для более легкого запоминания формулы умножения матриц существует простое правило: строка на столбец. Берем элементы из строки матрицы А и они умножаются на соответствующие элементы столбца матрицы B. Потом все произведения складываются и мы получаем значение элемента матрицы C.

Координаты элемента в результирующей матрице определяется как номер строки матрицы A и номер столбца матрицы B.

Транспонирование матриц

Транспонирование матрицы - это такая операция над матрицей, когда первая строка становится первым столбцом, вторая строка становится вторым столбцом и так далее...

В результате получается транспонированная матрица, обозначаемая как AT .

Обратная матрица

Матрица A-1 - называется обратной к матрице A, если выполняется условие A ·A-1 = A-1 ·A=E.

Для квадратной матрицы A обратная матрица существует тогда, когда det A ≠ 0.

Обратную матрицу находим следующим образом:

где Ai,j - алгебраические дополнения элементов матрицы A.

Похожие работы

  • Теорема Лапласа

    Теоре?ма Лапла?са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 — 1827), которому приписывают формулирование этой теоремы в 1772 году.

  • Матрицы и определители

    Дисциплина: Высшая математика Тема: Матрицы и определители Понятие матрицы При изучении вопросов, связанных с действием над векторами, а также при изучении систем линейных уравнений приходится иметь дело с таблицами из чисел, которые называются матрицами.

  • Матрицы

    Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.

  • Основы высшей математики

    Понятие "матрица" в математике. Операция умножения (деления) матрицы любого размера на произвольное число. Операция и свойства умножения двух матриц. Транспонированная матрица – матрица, полученная из исходной матрицы с заменой строк на столбцы.

  • Решение матриц

    Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.

  • Матрица

    Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij , i=1,..., m, j=1,..., n: расположенных в m строках и n столбцах. Матрица называется квадратной, если m=n (n - порядок матрицы).

  • Матрицы действия с ними

    Контрольная работа на тему: «Матрицы, действия с ними» Историческая справка Понятие Матрица (в математике) было введено в работах У. Гамильтона и А. Кэли в середине 19 века. Основы теории созданы К. Вейерштрассом и Ф. Фробениусом (2-я половина 19 века и начало 20 века). И.А. Лаппо-Данилевский разработал теорию аналитических функций от многих матричных аргументов и применил эту теорию к исследованию систем дифференциальных уравнений с аналитическими коэффициентами.

  • Матрицы графов

    БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра информатики РЕФЕРАТ На тему: «Матрицы графов» МИНСК, 2008 В теоретико-множественной и геометрической форм определения (задания) графов, часто используется матричная форма их представления. Существуют различные виды матриц графов, однако все они, как правило, полностью передают основные свойства графов.

  • Алгебра матриц

    Основные понятия. Линейные операции над матрицами. Умножение матриц. Свойства умножения матриц. Вырожденные и невырожденные матрицы.

  • Матрицы и определители

    Матрицы. Операции над матрицами. Определители. Теорема (разложение определителя по строке или столбцу).. Ранг матрицы. Обратная матрица.