Referat.me

Название: Матрицы действия с ними

Вид работы: контрольная работа

Рубрика: Математика

Размер файла: 45.32 Kb

Скачать файл: referat.me-216229.docx

Краткое описание работы: Контрольная работа на тему: «Матрицы, действия с ними» Историческая справка Понятие Матрица (в математике) было введено в работах У. Гамильтона и А. Кэли в середине 19 века. Основы теории созданы К. Вейерштрассом и Ф. Фробениусом (2-я половина 19 века и начало 20 века). И.А. Лаппо-Данилевский разработал теорию аналитических функций от многих матричных аргументов и применил эту теорию к исследованию систем дифференциальных уравнений с аналитическими коэффициентами.

Матрицы действия с ними

Контрольная работа на тему:

«Матрицы, действия с ними»


1. Историческая справка

Понятие Матрица (в математике) было введено в работах У. Гамильтона и А. Кэли в середине 19 века. Основы теории созданы К. Вейерштрассом и Ф. Фробениусом (2-я половина 19 века и начало 20 века). И.А. Лаппо-Данилевский разработал теорию аналитических функций от многих матричных аргументов и применил эту теорию к исследованию систем дифференциальных уравнений с аналитическими коэффициентами. Матричные обозначения получили распространение в современной математике и её приложениях. Исчисление Матрица (в математике) развивается в направлении построения эффективных алгоритмов для численного решения основных задач.

2. Раскрытие темы

Понятие о матрице

Матрица – множество чисел, образующих прямоугольную таблицу, которая содержит m-строк и n-столбцов. Для обозначения матрицы используется надпись:

aij , I – номер строки, j – номер столбца.

Элементы матрицы, стоящие на диагонали, идущие из верхнего левого угла называют главной диагональю, другую диагональ называют побочной.


пример 1.

Элементы главной диагонали: 1,6,5. Побочной диагонали: 3,6,3. (пример 1)

пример 2.

Если количество строк m матрицы не равно количеству столбцов n, то матрица называется прямоугольной (пример 2).

Если количество столбцов матрицы совпадают с количеством строк, то матрица называется квадратной (пример 1).

Количество строк или столбцов в квадратной матрице называются ее порядком.

Если все элементы квадратной матрицы, кроме элементов главной диагонали, равны нулю, то матрица называется диагональной (пример 3).

пример3

Если все числа главной диагонали равны единице, то матрица называется единичной (пример 4).

пример 4

Если в прямоугольной матрице m*n m=1, то получается матрица-строка (пример 5).

xT = (2 3 5). пример 5.

Если n=1, то получается матрица-столбец (пример 6).

пример 6.

Матрицы-строки матрицы-столбцы называются векторами.

Свойства матриц:

- A + (B + C) = (A + B) + C

- A + B = B + A

- A(BC) = (AB) C

- A (B + C) = AB + AC

- (B + C) A = BA + CA

- (AT) T = A

- (A * B) T = BT * AT

Действия с матрицами

1. Сложение матриц

Матрицы одинакового размера можно складывать.

Суммой двух таких матриц А и В называется матрица С, элементы которой равны сумме соответствующих элементов матриц А и В. Символически будем записывать так: А+В=С.

Пример.


Легко видеть, что сложение матриц подчиняется переместительному и сочетательному законам:

А+В=В+А

(А+В)+С=А+(В+С).

Нулевая матрица при сложении матриц выполняет роль обычного нуля при сложении чисел: А+0=А.

2. Вычитание матриц.

Разностью двух матриц А и В одинакового размера называется матрица С, такая, что

С+В=А

Из этого определения следует, что элементы матрицы С равны разности соответствующих элементов матриц А и В.

Обозначается разность матриц А и В так: С=А – В.

Пример.

3. Умножение матриц

Рассмотрим правило умножения двух квадратных матриц второго порядка.


Произведением матрицы А на матрицу В называется матрица С=АВ.

Правила умножения прямоугольных матриц:

- Умножение матрицы А на матрицу В имеет смысл в том случае, когда число столбцов матрицы А совпадает с числом строк в матрице В.

- В результате умножения двух прямоугольных матриц получается матрица, содержащая столько строк, сколько строк было в первой матрице и столько столбцов, сколько столбцов было во второй матрице.

4. Умножение матрицы на число

При умножении матрицы A на число a все числа, составляющие матрицу A, умножаются на число a . Например, умножим матрицу на число 2. Получим , т.е. при умножении матрицы на число множитель «вносится» под знак матрицы.

5. Транспонирование матрицы

Транспонированная матрица – матрица AТ , полученная из исходной матрицы A заменой строк на столбцы.

Формально, транспонированная матрица для матрицы A размеров m*n – матрица AT размеров n*m, определённая как AT [i, j] = A [j, i].

Например,


Свойства транспонированных матриц

1. (AT )T = A

2. (A + B)T = AT + BT

3. (AB)T = BT AT

4. detA = detAT


Список литературы

1. Баврин, Матросов В.Л. Высшая математика: Учебник для студентов ВУЗов – М.: 2002.

2. Беллман Р. Введение в теорию матриц. – М.: Мир, 1969

3. Дж. Голуб, Ч. Ван Лоун Матричные вычисления. – М.: Мир, 1999.

Похожие работы

  • Системы линейных уравнений и неравенств

    Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

  • Математика матрица

    Матрицы Матрица - прямоугольная (в частном случае квадратная) таблица с числами. Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.

  • Задачи по Математике 2

    Часть 1. Системы координат. Коэффициент Ламэ. Элементы векторной алгебры. (х0, у0) равно: Ответ: 0 [z0, y0] равно: Ответ: - х0 [z0, x0] равно: Ответ: y0

  • Матрицы

    Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.

  • Основы высшей математики

    Понятие "матрица" в математике. Операция умножения (деления) матрицы любого размера на произвольное число. Операция и свойства умножения двух матриц. Транспонированная матрица – матрица, полученная из исходной матрицы с заменой строк на столбцы.

  • Алгебра матриц. Системы линейных уравнений

    Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

  • Жозеф Луи Лагранж

    Лагранж, Жозеф Луи (Lagrange, Joseph Louis) (1736–1813), французский математик и механик.

  • Матрица

    Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij , i=1,..., m, j=1,..., n: расположенных в m строках и n столбцах. Матрица называется квадратной, если m=n (n - порядок матрицы).

  • по линейной алгебре

    Министерство образования РФ Московский государственный университет сервиса Региональный институт сервиса Контрольная работа по математике Выполнил студент 1 курса

  • Квадратные формы

    Лекция 10. Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.