Название: Закономерность распределения простых чисел (дополнение)
Вид работы: реферат
Рубрика: Математика
Размер файла: 29.73 Kb
Скачать файл: referat.me-218753.docx
Краткое описание работы: Я написал предыдущий ряд разностей по принципу личной симпатии. Подстраховался от критики, ежели бы у кого-то не получилось составить систему уравнений, например, с разностью d = 7, ибо для нетренированных рук могут возникнуть трудности.
Закономерность распределения простых чисел (дополнение)
Закономерность распределения простых чисел.
Белотелов В.А.
Нижегородская обл.
г. Заволжье
Дополнение к предыдущей работе «Закономерность распределения простых чисел в ряду натуральных чисел» размещённой на сайте:
http://www.referat.ru/pub/item/28291
Там где даны в качестве примера разности арифметических прогрессий и указан их ряд 1, 2, 4, 6, 10, 12, 18, 20, 30, 36, 60. На самом деле пропусков в ряду быть не должно. Ряд разностей арифметических прогрессий имеет вид – 1, 2, 3, 4, 5, 6….®¥.
Я написал предыдущий ряд разностей по принципу личной симпатии. Подстраховался от критики, ежели бы у кого-то не получилось составить систему уравнений, например, с разностью d = 7, ибо для нетренированных рук могут возникнуть трудности.
И ещё. Формулы членов матриц составных чисел (СЧ), которые описываются в системах уравнений двойными суммами. Для этого требуется всего лишь в значения переменных двойных сумм вставить их аналитические выражения через переменные и
- столбцы и строки матриц.
Тогда формула любого члена матриц СЧ таблицы 4, примет вид (30I - 17) (30
j - 23).
Аналогично для таблицы 7- (10I - 3) (10
j - 7).
Для таблицы 8, ряда нечётных чисел - (2I + 1) (2
j + 1).
Для таблицы 9, ряда натуральных чисел - (I + 1) (
j + 1).
Заостряю внимание на том факте, что это уже не номера членов СЧ в рядах простых чисел ПЧ + СЧ, а численные значения этих номеров. И подобных уравнений СЧ можно составить по числу систем арифметических прогрессий, и даже значительно больше, т.е. бесконечное множество.
Всё же для наглядности распишу систему уравнений таблицы 3 предыдущей работы.
и
- столбцы и строки матриц, индексами не снабжаю.
И уж больно симпатичная система из 2-х уравнений с разностью арифметических прогрессий d=6.
5х5 | 7х7 | 5х11 | 5х17 | 7х13 | ||||||||||||
1 | 7 | 13 | 19 | 25 | 31 | 37 | 43 | 49 | 55 | 61 | 67 | 73 | 79 | 85 | 91 | 97 |
5х7 | 5х13 | 7х11 | 5х19 | |||||||||||||
5 | 11 | 17 | 23 | 29 | 35 | 41 | 47 | 53 | 59 | 65 | 71 | 77 | 83 | 89 | 95 | 101 |
Напишу только формулы составных чисел
1 – для верхнего ряда (6I - 1) (6
j - 1), (6
k + 1) (6
e +1).
2 – для нижнего ряда (6I + 1) (6
j - 1).
А написал с единственной целью сравнить формулы разных систем простых чисел.
В системе c d = 30 число 91 – это (30- 17) (30
- 23), при
= 1,
= 1.
В системе c d = 10 это же число – (10- 3) (10
- 7), при
= 2,
= 1.
В системе c d = 6 ……………… – (6+ 1) (6
+ 1), при
= 1,
= 2.
В системе c d = 4 ……………… – (4- 1) (4
+ 1), при
= 2,
= 3.
В системе c d = 2 ……………… – (2+ 1) (2
+ 1), при
= 3,
= 6.
В системе c d = 1 ……………… – (+ 1) (
+1), при
= 6,
= 12.
Похожие работы
-
Решение краевой задачи для ОДУ методом конечных разностей
МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МАРИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра ПиПЭВС Курсовая работа по дисциплине «Моделирование систем»
-
Статистическая обработка результатов прямых многоразовых измерений с независимыми равноточными
Розрахунково-графічне завдання з теми: «Статистична обробка результатів прямих багаторазових вимірювань з незалежними рівноточними спостереженнями»
-
Закономерность распределения простых чисел в ряду натуральных чисел
IX математический симпозиум. Закономерность распределения простых чисел в ряду натуральных чисел. г. Волжский. 05-11 октября 2008 года. Белотелов В.А.
-
Численные методы
Интерполяционная схема Эйткина. Связь конечных разностей и производных. Распространение ошибки исходных данных при вычислении конечные разности. Свойства разделенной разности. Интерполяционная формула Ньютона для не равноотстоящих узлов. Полином Лагранжа.
-
Закон Хаббла
Есть необходимость детализации вопроса, касающегося непосредственно эмпирической закономерности, известной как Закон Хаббла. Эта закономерность опирается, как известно, на достаточно давнее астрономическое открытие Хаббла.
-
Пафнутий Львович Чебышев
Корнет казачьего полка Лев Павлович Чебышев и его супруга дали своему первому сыну, родившемуся 26 мая 1821 года в селе Окатово Калужской губернии, редкое имя Пафнутия. О детстве Пафнутия Львовича – великого русского математика мы знаем очень мало. Грамоте его обучала мама, а французкому и арифметике – двоюродная сестра.
-
О нелинейной динамике
Успехи механики в XVII-XIX веках были столь впечатляющими, что стало казаться возможным представить себе всю Вселенную как гигантскую динамическую систему.
-
Доказательство сильной гипотезы Гольдбаха-Эйлера
Доказательство гипотезы Гольдбаха-Эйлера. Гипотезы о том, что любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел и любое нечетное число М, большее семи, представимо в виде суммы трех нечетных простых чисел.
-
Дифференциальные уравнения линейных систем автоматического регулирования
Определение динамических свойств объектов с помощью дифференциальных уравнений для сравнительно простых объектов. Выражение входной и выходной величины элемента в долях, введение безразмерных координат. График кривой разгона, коэффициент усиления.
-
Общий аналитический метод решения алгебраических уравнений четвертой степени
Типовые методы решения уравнений.