Referat.me

Название: Алгебра и алгебраические системы

Вид работы: реферат

Рубрика: Математика

Размер файла: 75.72 Kb

Скачать файл: referat.me-218818.docx

Краткое описание работы: Рассматриваются бинарные и n-местные операции, виды бинарных операций, вводятся понятия алгебры, подалгебры, алгебраической системы, приводятся примеры.

Алгебра и алгебраические системы

Рассматриваются бинарные и n-местные операции, виды бинарных операций, вводятся понятия алгебры, подалгебры, алгебраической системы, приводятся примеры.

п.1. Бинарные и n-местные операции.

Пусть - непустое множество, то есть .

Определение. Бинарной операцией на множестве называется ото­бражение прямого произведения .

Другими словами: если каждой упорядоченной паре элементов мно­жества поставлен в соответствие единственный элемент из , то гово­рят, что задана бинарная операция на множестве .

Пример.

Пусть - произвольные высказывания

: - бинарная операция на множестве высказываний.

Пусть - произвольные множества

: - бинарная операция на множестве множеств.

Пусть

: - бинарная операция на множестве действительных чисел.

: - не является бинарной операцией на множестве , так как .

Если - произвольная бинарная операция на множестве и паре ставится в соответствие элемент (то есть ), то вместо записи пишут , то есть имеем . Элемент называется компози­цией элементов .

Определение. Пусть . Отображение назы­вается - местной операцией на множестве . Число - ранг опера­ции.

Определение. Нульместной операцией на множестве называется выделение (фиксация) какого-нибудь элемента множества . Число назы­вается рангом нульместной операции.

Определение. Одноместные операции называются унарными опера­циями. Другими словами: унарная операция каждому элементу из множе­ства ставит в соответствие элемент из множества , то есть унарная опе­рация – это отображение множества во множество .

Унарную операцию называют оператором.

Пример.

Пусть - множество натуральных чисел

- унарная операция

- не является унарной операцией

На множестве высказываний операция : - унарная опера­ция

На множестве подмножеств универсального множества операция до­полнения – унарная операция.

Определение. Отображение из множества называется частич­ной - местной операцией на множестве , если область определе­ния отображения не совпадает с .

Виды бинарных операций

Пусть - бинарные операции на множестве .

Операция - коммутативна на множестве .

Операция - ассоциативна на множестве .

Операция - дистрибутивна слева относительно операции .

Операция дистрибутивна справа относительно операции .

Пример.

Операция на множестве - коммутативна, ассоциативна.

Операция на множестве - коммутативна, ассоциативна.

На множестве множеств операции и дистрибутивны относи­тельно друг друга.

На множестве функций композиция функций - ассоциативная опера­ция, не является коммутативной операцией.

п.2. Понятие алгебры.

Определение. Алгебра , где , - множество опера­ций на .

Другими словами: если мы говорим об алгебре, то считаем, что за­дано множество и заданы операции.

Пример.

Пусть - множество высказываний

- алгебра логики высказываний.

Пусть - множество натуральных чисел

- алгебра натуральных чисел относительно операций и .

Определение. Алгебра называется подалгеброй алгебры , если множество ; - ограничение операции .

Определение. Алгебраическая система - это упорядоченная тройка , где , - множество операций на ; - мно­жество отношений на .

Список литературы

Е.Е. Маренич, А.С. Маренич. Вводный курс математики. Учебно-методическое пособие. 2002

В.Е. Маренич. Журнал «Аргумент». Задачи по теории групп.

Кострикин А.И. Введение в алгебру. Ч.1 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.2 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.3 Основные структуры алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Сборник задач по алгебре. Изд. третье – М.: Физмат лит-ра, 2001

Похожие работы

  • Теорема Лапласа

    Теоре?ма Лапла?са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 — 1827), которому приписывают формулирование этой теоремы в 1772 году.

  • Поле. Примеры полей. Свойства полей. Поле рациональных чисел

    Рассматривается определение поля, примеры и простейшие свойства полей, определения подполя, простого поля и поля рациональных чисел.

  • Кольца. Примеры колец. Гомоморфизмы и изоморфизмы колец. Подкольца. Кольцо целых чисел

    Для изучения предлагаются понятия кольца, коммутативного кольца и области целосности, гомоморфизма и изоморфизма колец, подкольца, а так же свойства кольца целых чисел.

  • Система натуральных чисел. Принцип математической индукции. Теоремы математической индукции

    Определение системы натуральных чисел (системы Пеано), аксиоматической системы Пеано, доказываются теоремы математической индукции, вводится определение чисел Фиббоначи и формула Бине для вычисления чисел Фиббоначи с доказательством.

  • Алгебраические системы замыканий

    Изучение абстрактных систем замыканий на множестве. Теорема о взаимосвязи между системами замыканий и операторами замыкания. Понятие и структура алгебраических систем замыканий. Анализ соответствия Галуа как наиболее важного примера систем замыканий.

  • Конспект по дискретной математики

    Дискретная математика Введение Общество 21в. – общество информационное. Центр тяжести в решении задач переместился от задач вычислительной математики к задачам на дискретных структурах. Математика нужна не как метод расчета, а как метод мышлению средство формирования и организации…

  • Некоторые примеры некоммутативных алгебр

    Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Московский педагогический государственный университет»

  • Конгруэнции Фраттини универсальных алгебр

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования "Гомельский государственный университет имени Франциска Скорины"

  • Представление бинарного дерева в виде массива

    Понятие линейных и нелинейных списков, иерархическое упорядочение элементов. Дерево - нелинейная структура, состоящая из узлов и ветвей и имеющая направление от корня к внешним узлам. Разработка программы представления бинарных деревьев в виде массива.

  • Разработка формальной системы

    Министерство образования Российской Федерации Рязанская государственная радиотехническая академия Кафедра ВПМ Разработка формальной системы Пояснительная записка к курсовому проекту