Название: Решение математических задач с использованием программного пакета MathCad
Вид работы: курсовая работа
Рубрика: Информатика и программирование
Размер файла: 140.82 Kb
Скачать файл: referat.me-134252.docx
Краткое описание работы: Дифференциальные уравнения как уравнения, в которых неизвестными являются функции одного или нескольких переменных, причем в уравнения входят не только сами функции, но и их производные. Решение операторным методом, с помощью рядов, методом Эйлера.
Решение математических задач с использованием программного пакета MathCad
Курсовая работа
На тему:
«Решение математических задач с использованием программного пакета MathCad »
Екатеринбург 2010
1. Краткие теоретические сведения
Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одного или нескольких переменных, причем в уравнения входят не только сами функции, но и их производные. Рассмотрим обыкновенное дифференциальное уравнение n-го порядка:
y( n ) = f (x, y, y’ , y’’ … y( n -1) )
Общее решение этого уравнения зависит от n-произвольных постоянных.
Точное решение дифференциального уравнения может быть найдено вручную, либо операторным методом в пакете MathCad. Также есть приближенные методы решения: решение с помощью рядов, численные методы и др.Каждый из этих методов определяет один или несколько бесконечных процессов, с помощью которых при выполнении определённых условий можно получить точное решение задачи. Для получения приближенного решения останавливаются на некотором шаге процесса.
Принцип операторного метода состоит в том, что при переводе функции дифференциального уравнения y( n ) = f (x, y, y’ , y’’ … y( n -1) ) в пространство Лапласа мы получаем изображение F(s), которое зависит только от одной переменной s. Отсюда, по теореме о единственности мы можем найти точное решение дифференциального уравнения.
Если решение ищется в виде бесконечного ряда, то за приближенное решение принимают конечный отрезок ряда. Например, пусть требуется найти решение дифференциального уравнения y' = f (x, у), удовлетворяющее начальным условиям у (х0 ) = y0 , причём известно, что f (x, у) – аналитическая функция х, у в некоторой окрестности точки (х0 , y0 ). Тогда решение можно искать в виде степенного ряда:
y (x) – y (x0
) =
Коэффициенты Ak ряда могут быть найдены либо последовательным дифференцированием, либо с помощью метода неопределенных коэффициентов, который применяется в курсовой работе. Метод рядов позволяет находить решение лишь при малых значениях величины х – х0 .
К численным методам относятся методы, позволяющие находить приближенное решение при некоторых значениях аргумента (т.е. получать таблицу приближённых значений искомого решения), пользуясь известными значениями решения в одной или нескольких точках. Такими методами являются, например, метод Эйлера, метод Рунге и целый ряд разностных методов (метод Рунге-Кутты).
Если a – точное решение, то абсолютной погрешностью приближенного значения a* называют величину Д(а* ), которая определяется следующим образом:
|a* -a| ≤ Д(a* )
Относительной погрешностью Дa приближенного значения называют некоторую величину, которая определяется следующим образом:
|(a* -a)/ a* | ≤ д(a* )
Таким образом, эти две погрешности связаны между собой:
д(a* ) = Д(a* ) / |a* |
Относительную погрешность часто выражают в процентах. Числа a* и Дa принято записывать с одинаковым количеством знаков после запятой.
2. Дифференциальное уравнение
Получить точное решение дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на интервале [0,1], численное решение методами Эйлера и Рунге-Кутты, представить совместное графическое решение ДУ всеми способами. Рассчитать локальную погрешность методов Эйлера и Рунге-Кутты. Рассчитать относительную и абсолютную погрешность всех методов с использованием точного решения.
Дано:
2x''+5x'=29cost
x(0)= -1
x'(0)=0
2.1 Точное решение операторным методом
Пусть X(s) изображение, а х(t) оригинал.
Продифференцируем левую часть уравнения:
2x''+5x'=5*(s2 *X-s*x(0) – x'(0))+5*(s*X-x(0))
Подставим данные значения x(0) и x'(0) в уравнение и получим:
x''-3x'+2x= 2*(s2 *X+s)+5*(s*X+1)=X*(2s2 +5s)+s*2+5
Преобразуем правую часть уравнения в пространство Лапласа
Найдем значение изображения:
Given
Сопоставим изображению оригинал:
Найдем значения функции, построим её график:
дифференциальный уравнение эйлер операторный
2.2 Приближенное решение с помощью рядов
Запишем функцию в виде ряда:
Найдем производные первого и второго порядков от этой функции:
Разложим в ряд правую часть уравнения:
Полученные ряды подставим в исходное уравнение:
Найдем значения коэффициентов
Подставим найденные значения в разложение функции в ряд и построим график функции:
2.3 Численное решение методом Эйлера
Перепишем условие следующим образом:
x'=z
z'+ 5z=29cos t
z'=29cos t – 5z
Задаём начальные данные:
Находим значение x и x'
Для сравнения решим это дифференциальное уравнение с шагом 0,01. Построим график.
2.4 Численное решение методом Рунге-Кутты четвертого порядка
Определяем функцию D, задающую производные и находим значения функции. Строим график функции:
2.5 Расчет погрешности приближенного и численных методов
Таблица 1 – Значения функции
Заданный интервал | Точное решение | Приближенное с помощью рядов | Метод Эйлера (шаг 0,1) | Метод Эйлера (шаг 0,01) | Метод Рунге Кутты |
0 | -1,000000 | -1,000000 | -1,000000 | -1,000000 | -1,000000 |
0,1 | -0,933240 | -0,933240 | -1,000000 | -0,938953 | -0,933221 |
0,2 | -0,753725 | -0,753766 | -0,855000 | -0,762488 | -0,753695 |
0,3 | -0,488339 | -0,488787 | -0,601974 | -0,498255 | -0,488302 |
0,4 | -0,159271 | -0,161707 | -0,270096 | -0,168991 | -0,159232 |
0,5 | 0,214972 | 0,205973 | 0,117337 | 0,206412 | 0,215012 |
0,6 | 0,618801 | 0,592753 | 0,541466 | 0,612091 | 0,618840 |
0,7 | 1,038952 | 0,975227 | 0,986812 | 1,034588 | 1,038989 |
0,8 | 1,464038 | 1,326187 | 1,440495 | 1,462384 | 1,464072 |
0,9 | 1,884213 | 1,612712 | 1,891659 | 1,885536 | 1,884245 |
1 | 2,290920 | 1,794271 | 2,331055 | 2,295416 | 2,290950 |
Таблица 2 – Локальная, абсолютная и относительная погрешность
Абсолютная погрешность | Относительная погрешность | |||||||
Решения с помощью рядов | метода Эйлера (шаг 0,1) | метода Эйлера (шаг 0,01) | метода Рунге Кутты | Решения с помощью рядов | метода Эйлера (шаг 0,1) | метода Эйлера (шаг 0,01) | метода Рунге Кутты | |
Локальная погрешность | 0,000000 | 0,000000 | 0,000000 | 0,000000 | 0,0 | 0,0 | 0,0 | 0,000 |
0,000000 | 0,066760 | 0,005713 | -0,000019 | 0,0 | -6,7 | -0,6 | 0,002 | |
0,000041 | 0,101275 | 0,008763 | -0,000030 | 0,0 | -11,8 | -1,1 | 0,004 | |
0,000448 | 0,113635 | 0,009916 | -0,000037 | -0,1 | -18,9 | -2,0 | 0,008 | |
0,002436 | 0,110825 | 0,009720 | -0,000039 | -1,5 | -41,0 | -5,8 | 0,024 | |
0,008999 | 0,097635 | 0,008560 | -0,000040 | 4,4 | 83,2 | 4,1 | -0,019 | |
0,026048 | 0,077335 | 0,006710 | -0,000039 | 4,4 | 14,3 | 1,1 | -0,006 | |
0,063725 | 0,052140 | 0,004364 | -0,000037 | 6,5 | 5,3 | 0,4 | -0,004 | |
0,137851 | 0,023543 | 0,001654 | -0,000034 | 10,4 | 1,6 | 0,1 | -0,002 | |
0,271501 | -0,007446 | -0,001323 | -0,000032 | 16,8 | -0,4 | -0,1 | -0,002 | |
0,496649 | -0,040135 | -0,004496 | -0,000030 | 27,7 | -1,7 | -0,2 | -0,001 |
2.6 Совместное графическое решение
Рисунок 1 – Совместное графическое решение
Из всех методов наиболее точным оказался метод Рунге-Кутты, его максимальная относительная погрешность 0,024%, относительная погрешность приближенного метода составила 27,7%. Метод Эйлера с шагом 0,1 имеет наибольшую погрешность 83,2%, однако при уменьшении шага в до 0,01 его погрешность составляет всего 5,8%. Это подтверждает то, что погрешность метода Эйлера сильно зависит от принятого шага. Проанализировав графическое решение делаем вывод о том, что методы Эйлера и Рунге-Кутты повторяют форму кривой точного решения, а график приближенного решения с увеличением аргумента всё сильнее отклоняется от искомого графика – свидетельство того, что погрешность решения с помощью рядов зависит от количества членов ряда. Характер кривой также говорит о том, что точность приближенного решения с помощью рядов удовлетворительна только вблизи некоторой точки.
3. Система дифференциальных уравнений
Решить систему дифференциальных уравнений, получить точное решение вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента), численное решение методом Эйлера, Рунге-Кутты. Представить графическое совместное решение, рассчитать локальную, относительную и абсолютную погрешность решения.
Дано:
dx/dt=3x + y
dy/dt=5/2x – y + 2
x(0)=0
y(0)=1
3.1 Точное решение операторным методом
Пусть X(s) изображение, для оригинала x(t), Y(s) изображение для оригинала y(t). Перейдем от оригинала к изображению:
Найдем значения изображений:
Найдем значения функции и построим её график:
3.2 Приближенное решение с помощью рядов
Преобразуем систему таким образом что, получим дифференциальное уравнение второго порядка, зависящее только от x:
x''-2x'-11/2x-2=0
Алгоритм решения такой же, как и при решении дифференциального уравнения с правой частью специального вида, но без необходимости раскладывать правую часть.
Выводы
Наименьшую погрешность имеет метод Рунге-Кутты четвертого порядка – для функции x(t) относительная погрешность на десятом шаге составляет 0,036%, для функции y(t) 0,0297%. Наибольшая погрешность у метода Эйлера с шагом 0,1 – для функции x(t) 70,8%, для функции y(t) 51,4%. При изменении шага до 0,01 погрешность существенно уменьшается до 6,6% и 5,3% соответственно. Вывод о влиянии шага на погрешность в методе Эйлера совпадает с выводами решения дифференциального уравнения – большую роль в точности этого метода играет шаг. Можно еще раз подтвердить вывод о том, что точность приближенного метода решения сильно зависит от того, на сколько членов будет разложена дифференциальная функция.
Похожие работы
-
Построение графиков функций. Решение нелинейных уравнений и систем нелинейных уравнений
Методика и основные этапы построения ранжированных переменных, сферы и особенности их практического применения. Порядок построения графиков в декартовой системе. Приведение примеров решение нелинейных уравнений и их систем при помощи решающего блока.
-
Решение дифференциальных уравнений. Обзор
Обзор методов решения в Excel. Рекурентные формулы метода Эйлера. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Эйлера с шагом h/2. Решение дифференциальных уравнений с помощью Mathcad. Модифицированный метод Эйлера.
-
ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы дифференциальных уравнений
Решение системы дифференциальных уравнений, заданной в нормальной форме Коши. Определение аналитических зависимостей изменения переменных состояния системы с использованием преобразования Лапласа. Численный метод решения системы c помощью Mathcad.
-
ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения дифференциального уравнения n-го порядка
Решение дифференциального уравнения N-го порядка методом интегрирования при помощи характеристического уравнения, методом интегрирования и операторным методом для значений аргументов при заданных начальных условиях и нулевых уравнения 4–го порядка.
-
Решение нелинейных уравнений
ЧИСЛЕННОЕ . 1п. Общий вид нелинейного уравнения F(x)=0 Нелинейные уравнения могут быть двух видов: Алгебраические anxn + an-1xn-1 +… + a0 = 0 Трансцендентные- это уравнения в которых х является аргументом
-
Решение дифференциального уравнения с последующей аппроксимацией
МИНИСТЕРСТВО СВЯЗИ РФ СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ ХАБАРОВСКИЙ ФИЛИАЛ К У Р С О В А Я Р А Б О Т А ПО ИНФОРМАТИКЕ на тему:
-
Отыскание корня уравнения методом половинного деления
Тестирование модуля отыскания корня уравнения методом половинного деления. Схема алгоритма тестирующей программы. Численное интегрирование по методу Симпсона с оценкой погрешности по правилу Рунге. Проверка условий сходимости методов с помощью MathCAD.
-
Методы и алгоритмы компьютерного решения дифференциальных уравнений
Решение линейных дифференциальных уравнений численными и символьными методами в рамках пакета компьютерной математики MathCAD. Сравнения результов решений и применение их при исследовании функционирования автоматических систем и электрических агрегатов.
-
Принципы построения систем автоматического управления
Теория автоматического управления как наука, предмет и методика ее изучения. Классификация систем автоматического управления по различным признакам, их математические модели. Дифференциальные уравнения систем автоматического управления, их решения.
-
Алгоритмы численного решения задач
Графоаналитический метод решения задач. Получение задачи линейного программирования в основном виде. Вычисление градиента и поиск экстремумов методом множителей Лагранжа. Параболоид вращения функции. Поиск решения на основе условий Куна-Таккера.