Название: Елементи комбінаторики 2
Вид работы: реферат
Рубрика: Астрономия
Размер файла: 34.08 Kb
Скачать файл: referat.me-1800.docx
Краткое описание работы: ЕЛЕМЕНТИ КОМБІНАТОРИКИ § 1. Поняття множини. Операції над множинами Поняття множини належить до первісних понять математики, якому не дається означення Множину можна уявити собі як сукупність деяких предметів, об'єднаних за довільною характеристичною ознакою Наприклад, множина учнів класу, множина цифр десяткової нумерації (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), множина натуральних чисел, множина зернин у даному колосі, множина букв українського алфавіту, множина точок на прямій
Елементи комбінаторики 2
ЕЛЕМЕНТИ КОМБІНАТОРИКИ
§ 1. Поняття множини. Операції над множинами
Поняття множини належить до первісних понять математики, якому не дається означення Множину можна уявити собі як сукупність деяких предметів, об'єднаних за довільною характеристичною ознакою Наприклад, множина учнів класу, множина цифр десяткової нумерації (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), множина натуральних чисел, множина зернин у даному колосі, множина букв українського алфавіту, множина точок на прямій
Предмети, з яких складається множина, називаються її елементами і позначаються малими буквами латинського алфавіту. Наприклад, а = 5 - елемент множини цифр десяткової нумерації Для позначення множин використовують великі букви латинського алфавіту або фігурні дужки, всередині яких записуються елементи множини При цьому порядок запису елементів не має значення Наприклад, множину цифр десяткової нумерації можна позначити буквою М (чи будь-якою великою буквою латинського алфавіту) або записати так {1, 3, 5, 2, 4, 6, 8, 7, 9, 0}
Належність предмета даній множині позначається символом , а неналежність - символом (інколи ) Наприклад, число 7 А , де А - множина чисел першого десятка, а число 12 A .
Множини бувають скінченні і нескінченні. У скінченній множині міститься певна кількість елементів, тобто кількість елементів скінченної множини виражається натуральним числом Наприклад, множина М цифр десяткової нумерації скінченна і містить десять елементів. У нескінченній множині - нескінченна кількість елементів. Наприклад, множина натуральних чисел, множина точок прямої - нескінченні множини.
Множина, в якій немає жодного елемента, називається порожньою і позначається символом . Наприклад, множина точок перетину двох паралельних прямих - порожня множина
Якщо множина В складається з деяких елементів даної множини А (і тільки з них), то множина В називається підмножиною множини А . У такому разі співвідношення між множинами А і В позначається так В А (читається "В міститься в А " або "В — підмножина А "). Якщо В може й дорівнювати А , то вживається символ В А . Знак називається знаком нестрогого включення, а знак - знаком строгого включення.
Порожня множина є підмножиною будь-якої множини, тобто А .
Саму множину А можна розглядати як підмножину А , тобто А А .
Множину задають двома основними способами:
1) переліченням всіх її елементів;
2) описанням характеристичної властивості її елементів. Наприклад: а) В = {-,,-} - множина, задана переліченням елементів; б) X - множина коренів квадратного рівняння х2 = 25. Множина X задана характеристичною властивістю елементів - бути коренем рівняння х2 = 25". Цю саму множину можна задати і переліченням її елементів: X = {-5; 5}.
Дві множини називаються рівними, якщо вони складаються з тих самих елементів. Наприклад, множини коренів рівняння х 2 = 25 і |x | = 5 рівні між собою. Справді, X = {-5; 5} і Y = {-5; 5}, де Y - множина розв'язків рівняння |x |-5. Отже, X = Y .
Над множинами виконуються певні операції (дії). Зазначимо три з них.
Переріз множин. Перерізом множин А і В називається множина С, яка складається з усіх тих і тільки тих елементів, які належать коленій з даних множин А і В.
Приклад 1. Нехай А - множина всіх дільників числа 32, тобто А = {І, 2, 4, 8, 16, 32), а В - множина всіх дільників числа 24, тобто В = {1, 2, 3, 4, 6, 8, 12, 24}. Тоді перерізом множин А і В є множина С = {1, 2, 4, 8}, яка складається зі спільних дільників чисел 32 і 24.
Схематично переріз множин А і В можна зобразити за допомогою фігур. Символічно позначається так: С = А В і читається: "С є перерізом А і В ".
Приклад 2. Нехай М - множина прямокутників, N - множина ромбів, тоді Р = М N - множина квадратів.
Об'єднання множин. Об'єднанням (або сумою) двох множин А і В називається така множина С, яка складається з усіх елементів множин А і В, і тільки з них.
Позначається це так: С = А В і читається: "С є об'єднанням А і В ".
Якщо множини А і В мають спільні елементи, тобто А В 0, то кожний з цих спільних елементів береться в множину С тільки один раз.
Приклад 3. А ={1,2, 3,4}, В = {3, 4, 5, 6}, тоді С = {1,2,3,4,5,6}.
Приклад 4. Q - множина раціональних чисел, І - множина ірраціональних чисел. Тоді множиною R всіх дійсних чисел буде об'єднання множин Q і І , тобто R = Q І .
Операції над множинами широко використовуються в математиці та інших науках, а також у практиці. Наприклад, розв'язками системи рівнянь є переріз множин розв'язків кожного рівняння, а об'єднання їх є множиною розв'язків сукупності рівнянь.
Віднімання множин. Доповнення множини. Різницею двох множин А і В називається така множина С, яка складається з усіх елементів множини А, що не належать множині В.
Позначається це так: С = А В і читається: "С є різницею А і В ".
Приклад 5. а) А = {5,6, 8, 12}, В = {5, 6}, тобто В А , тоді С = А В = {8, 12};
б) А = {5, 6, 8, 12}, В = {8, 12, 1, 2}, тоді С = А В = {5, 6};
в) А = {5, 6, 12}, В = {1, 2}, тоді С = А В = {5, 6, 12};
г) А = {5, 6}, В = {5,6, 12}, тобто В А , тоді С = А В = .
У випадку, коли А В , то різниця С = А В називається доповненням множини В відносно множини А і позначається СА В .
Похожие работы
-
Бульові функції
Реферат на тему: 1. Алгебри бульових виразів і бульових функцій 7.1.1. Основні поняття Множину {0, 1} позначимо літерою B. Множину всіх можливих послідовностей з 0 і 1 – Bn. Такі послідовності за традицією будемо називати наборами або векторами довжини n. Очевидно, Bn містить 2n елементів. Значення 0 і 1 називаються протилежними одне до одного.
-
Поняття множини Змінні та постійні величини Функція область визначення Лінії та поверхні рів
Пошукова робота на тему: Поняття множини. Змінні та постійні величини. Функція, область визначення. Лінії та поверхні рівня. Способи задання. Графіки, їх перетворення. Основні елементарні функції та їх графіки. Поняття неявної, складної та оберненої функції.
-
Поняття предиката
Реферат на тему: Поняття предиката Числення висловлень, що розглядалось у попереднiх роздiлах, як алгебра висловлень i як формальна (аксiоматична) теорiя, є важливою i невiд’ємною складовою частиною всiх числень математичної логiки. Однак воно є занадто бiдним для опису та аналiзу найпростiших логiчних мiркувань науки i практики.
-
Функція границя функції
Реферат на тему: Функція, границя функції Означення. Якщо кожному елементу x з області визначення D за деяким правилом поставлено у відповідність один і тільки один елемент y з області значень E , то говорять, що задано функцію y=f
-
Функції багатьох змінних Означення границя та неперервність похідні диференціали
Тема: Функції багатьох змінних. Означення, границя та неперервність, похідні диференціали. Як відомо, будь-який упорядкований набір з n дійсних чисел х1…,хn позначається (х1,…,хn) або М(х1,…,хn) і називається точкою n-вимірного арифметичного простору Rn; числа х1,…,хn називаються координатами точки М(х1,…,хn).
-
Початки комбінаторики
Реферат на тему: 1. Принцип добутку і принцип суми. Розміщення з повтореннями Двома основними правилами комбінаторики є: Принцип суми . Якщо множина A містить m елементів, а множина B – n елементів, і ці множини не перетинаються, то AB містить m+n елементів.
-
Множини 3
Практичні заняття Множини Paskal дозволяє оперувати трьома множинами, як трьома типами даних. Для визначення типу множина використовується вираз:
-
Опуклі множини
У курсі “Математичне програмування” та в деяких економічних дослідження використовуються поняття опуклої лінійної комбінації векторів та опуклої множини.
-
Поняття функції 5
Поняття функції Вивчаючи те чи інше явище, ми, як правило, оперуємо кількома величинами, які пов'язані між собою так, що зміна деяких з них приводить до зміни інших.
-
Функції та способи їх задання
Реферат з предмету „Вища математика” на тему: Функції та способи їх задання” План 1. Деякі властивості функції. 2. Області визначення та значення функції заданої аналітично.