Название: Опуклі множини
Вид работы: реферат
Рубрика: Астрономия
Размер файла: 56.08 Kb
Скачать файл: referat.me-1032.docx
Краткое описание работы: У курсі “Математичне програмування” та в деяких економічних дослідження використовуються поняття опуклої лінійної комбінації векторів та опуклої множини.
Опуклі множини
У курсі “Математичне програмування” та в деяких економічних дослідження використовуються поняття опуклої лінійної комбінації векторів та опуклої множини.
Спочатку ознайомимось з поняттям опуклої лінійної комбінації векторів.
Нехай на площині задані точки А1 та А2 , що визначають відрізок А1 А2 , зображений на Малюнку 1. Знайдемо радіус-вектор довільної точки М цього відрізка через радіуси-вектори 1 та 2 точок А1 та А2 .
Вектори
колінеарні і однаково напрямлені, тому вони пропорційні. Отже, існує таке t, що:
Звідси одержимо:
Якщо позначити 1 – t = t1 , t = t2 , то остання рівність прийме вигляд
(1)
(2)
Означення. Опуклою лінійною комбінацією векторів 1 та 2 називають комбінацією (1) цих векторів при умові (2).
Рівняння (1) з умовою (2) можна зрозуміти як векторне рівняння відрізка А1 А2 .
Означення. Опуклою лінійною комбінацією kn-вимірних векторів називають комбінацію
(3)
при умовах
(4)
Наприклад. Лінійна комбінація , має
,
тому вона опукла.
Означення. Опуклою множиною називається множина, дві довільні точки якої визначають відрізок, що належить цій множині.
Відрізок, півпряма, пряма, кут менший 1800 , коло, півплощина, куб, тетраедр, куля – опуклі множини.
На малюнку 2 зображені різні множини. У випадках а) – с) ці множини опуклі, у випадках d) – е) вони неопуклі.
Означення. Граничною точкою множини називають таку точку, в околі якої, як завгодно малого радіуса з центром в цій точці, є точки, що належать множині, і є точки, що не належать множині.
Границею множини називається сукупність всіх її граничних точок.
Множина, якій належить її границя, називається замкненою.
Опуклі замкнені множини бувають обмеженими і не обмеженими. Множина називається обмеженою, якщо існує таке число с > 0, що відстань довільної точки М множини від початку координат обмежена, тобто |ОМ| < 0.
Означення. Опукла замкнена множина в n вимірному просторі, що має скінченне число кутових точок, називається опуклим n вимірною многогранною множиною, якщо вона не обмежена.
Кутові точки називають вершинами, відрізки, що сполучають дві сусідні вершини, називають ребрами.
Означення. Опорною прямою многокутника в двовимірному просторі називається пряма, яка має з многокутником, розташованим по одну сторону від неї, принаймні одну спільну точку.
Опорна пряма з многокутником може мати спільну вершину або ребро.
Останні поняття узагальнюються на випадок n вимірного простору.
Означення. Опорною гіперплощиною опуклої замкненої множини n вимірного простору називається гіперплощина, що має з цією множиною, розташованою по одну сторону від неї, хоч би одну спільну точку.
Опорна гіперплощина з множиною може мати спільну вершину, ребро або грань.
Похожие работы
-
Математичне забезпечення САПР
Тема : Математичне забезпечення САПР. 1. Загальні поняття та вимоги до МЗ. 2. Способи отримання математичних моделей. 3. Постановка задач оптимізації.
-
Еліпсоїд
1) ом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням. Рівняння (1) називається канонічним рівнянням еліпсоїда. Дослідження форми еліпсоїда проведемо методом паралельних перерізів. Для цього розглянемо перерізи даного еліпсоїда площинами, паралельними площині Оху.
-
Ймовірнісний зміст нерівності Йєнсена
Реферат на тему: Ймовірнісний зміст нерівності Йєнсена. Нові інформаційні технології в освіті неможливі без нової інформації в конкретних навчальних дисциплінах. В останні роки невпинно зростає кількість прихильників виховання ймовірнісного світогляду школярів і студентів, що вивчають математичні дисципліни.
-
Вектори лінійні операції над ними
Пошукова робота на тему: Вектори, лінійні операції над ними. План Вектори і скаляри. Множення вектора на число. Додавання та віднімання векторів. Проекція вектора на вісь.
-
Початки комбінаторики
Реферат на тему: 1. Принцип добутку і принцип суми. Розміщення з повтореннями Двома основними правилами комбінаторики є: Принцип суми . Якщо множина A містить m елементів, а множина B – n елементів, і ці множини не перетинаються, то AB містить m+n елементів.
-
Контекстно-вільні та LA-граматики
Реферат на тему: Контекстно-вільні та LA(1)-граматики 1. Контекстно-вільні граматики Контекстно-вільною , або КВ-граматикою , називається граматика, в якій ліві частини всіх продукцій є нетерміналами. Зміст терміну "контекстно-вільна" полягає в тім, що застосування продукції
-
Лінійний векторний простір
РЕФЕРАТ на тему: Лінійний векторний простір” Векторний простір лінійний простір ) - безліч елементів, які називаються векторами, для яких визначені операції додавання і множення на число. Найпростіший, але важливий приклад - сукупність векторів
-
Вектори на площині і в просторі Дії з векторами
Вектори на площині і в просторі. Дії з векторами Мета. Узагальнення знань студентів про вектори на площині; формування поняття вектора в просторі. 1. Вектори. Основні поняття і означення.
-
Елементи комбінаторики 2
ЕЛЕМЕНТИ КОМБІНАТОРИКИ § 1. Поняття множини. Операції над множинами Поняття множини належить до первісних понять математики, якому не дається означення Множину можна уявити собі як сукупність деяких предметів, об'єднаних за довільною характеристичною ознакою Наприклад, множина учнів класу, множина цифр десяткової нумерації (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), множина натуральних чисел, множина зернин у даному колосі, множина букв українського алфавіту, множина точок на прямій
-
Множини 3
Практичні заняття Множини Paskal дозволяє оперувати трьома множинами, як трьома типами даних. Для визначення типу множина використовується вираз: