Referat.me

Название: Существование решения дифференциального уравнения и последовательные приближения

Вид работы: реферат

Рубрика: Математика

Размер файла: 93.8 Kb

Скачать файл: referat.me-214764.docx

Краткое описание работы: Теорема существования и единственности решения уравнения.

Существование решения дифференциального уравнения и последовательные приближения

Курсовая работа

Выполнил студент 2 курса 1222 группы Труфанов Александр Николаевич

Государственное образовательное учреждение высшего профессионального образования «Самарский государственный университет»

Механико-математический факультет

Кафедра дифференциальных уравнений и теории управления

Самара 2004

Теорема существования и единственности решения уравнения

Пусть дано уравнение

с начальным условием

Пусть в замкнутой области Rфункции и непрерывны). Тогда на некотором отрезке существует единственное решение, удовлетворяющее начальному условию .

Последовательные приближения определяются формулами:

k = 1,2....

Задание №9

Перейти от уравнения

к системе нормального вида и при начальных условиях

, ,

построить два последовательных приближения к решению.

Произведем замену переменных

;

и перейдем к системе нормального вида:

Построим последовательные приближения

Задание №10

Построить три последовательных приближения к решению задачи

,

Построим последовательные приближения

Задание №11

а) Задачу

,

свести к интегральному уравнению и построить последовательные приближения

б) Указать какой-либо отрезок, на котором сходятся последовательные приближения, и доказать их равномерную сходимость.

Сведем данное уравнение к интегральному :

Докажем равномерную сходимость последовательных приближений

С помощью метода последовательных приближений мы можем построить последовательность

непрерывных функций, определенных на некотором отрезке , который содержит внутри себя точку . Каждая функция последовательности определяется через предыдущую при помощи равенства

i = 0, 1, 2 …

Если график функции проходит в области Г, то функция определена этим равенством, но для того, чтобы могла быть определена следующая функция , нужно, чтобы и график функции проходил в области Г. Этого удается достичь, выбрав отрезок достаточно коротким. Далее, за счет уменьшения длины отрезка , можно достичь того, чтобы для последовательности выполнялись неравенства:

, i = 1, 2, …,

где 0 < k < 1. Из этих неравенств вытекает следующее:

, i = 1, 2, …,

Рассмотрим нашу функцию на достаточно малом отрезке, содержащим , например, на . На этом промежутке все последовательные приближения являются непрерывными функциями. Очевидно, что т.к. каждое приближение представляет из себя функцию от бесконечно малого более высокого порядка, чем предыдущее приближение, то выполняются и описанные выше неравенства. Из этих неравенств следует:

что и является условием равномерной сходимости последовательных приближений.

С другой стороны, на нашем отрезке выполняется , что также совершенно очевидно. А так как последовательность сходится, то последовательность приближений является равномерно сходящийся на этом отрезке.

Список литературы

Л.С. Понтрягин. «Обыкновенные дифференциальные уравнения», М.: Государственное издательство физико-математической литературы, 1961

А.Ф. Филиппов «Сборник задач по дифференциальным уравнениям», М.: Интеграл-Пресс, 1998

О.П. Филатов «Лекции по обыкновенным дифференциальным уравнениям»,Самара: Издательство «Самарский университет», 1999

А.Н. Тихонов, А.Б. Васильева «Дифференциальные уравнения», М.: Наука. Физматлит, 1998

Похожие работы

  • Решение нелинейных уравнений

    Задание №1 Отделить корни уравнения графически и уточнить один из них: · методом половинного деления; · методом хорд; · методом касательных; · методом секущих;

  • Особое решение дифференциальных уравнений первого порядка

    Введение Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

  • Контрольная работа

    385. Вычислить несобственные интегралы или установить их расходимость. По определению несобственного интеграла имеем: Интеграл сходится. 301. Найти неопределенный интеграл.

  • Об одном аналоге задачи Бицадзе-Самарского для смешанно-составного уравнения

    Бабаев Х. Об одном аналоге задачи Бицадзе-Самарского для смешанно-составного уравнения. РЕФЕРАТ В данной работе для смешанно-составного уравнения ставится и исследуется одна нелокальная краевая задача, которая является некоторым аналогом задачи Бицадзе-Самарского. Единственность решения изучаемой задачи доказывается принципом максимума, а существование решения доказывается сведением изучаемой задачи к эквивалентному ей интегральному уравнению.

  • Решение нелинейных уравнений методом простых итераций

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОСТОЧНО-СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Реферат на тему: «Решение нелинейных уравнений

  • Доказательство великой теоремы Ферма

    Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

  • Интеграл дифференциального уравнения

    Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.

  • Анализ дифференциальных уравнений

    Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.

  • Решение систем нелинейных уравнений методом Ньютона

    ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ КАМСКАЯ ГОСУДАРСТВЕННАЯ ИНЖЕНЕРНО-ЭКОНОМИЧЕСКАЯ АКАДЕМИЯ

  • Краткое доказательство великой теоремы Ферма

    Теорема Ферма, ее формулировка и доказательство в случаях, если показатель степени n - нечетное число и если n - четное число. Теорема о единственности факторизации. Дополнительные обоснования теоремы. Состав наибольшего составного числового множителя.