Название: Задачи и примеры их решения по теории вероятности
Вид работы: контрольная работа
Рубрика: Математика
Размер файла: 77.38 Kb
Скачать файл: referat.me-218182.docx
Краткое описание работы: Вариант 3. 1. Решите уравнение Решение По определению Тогда и уравнение принимает вид откуда получаем Так как m может быть только натуральным числом, то значение
Задачи и примеры их решения по теории вероятности
Вариант 3.
1. Решите уравнение
Решение
По определению
.
Тогда и уравнение принимает вид
или
откуда получаем
и
Так как m может быть только натуральным числом, то значение отбрасываем.
Ответ:
.
2. В урне находится 12 белых и 8 черных шаров. Найти вероятность того, что два одновременно изъятых наудачу шара будут черными
Решение
При выборе двух шаров из 20 существует различных вариантов, где
, тогда
Определим благоприятных исходов, т.е. извлечены два черных шара. Два черных шара из 8 можно выбрать способами следовательно, число благоприятных исходов
.
Искомая вероятность, согласно классическому определению вероятности, равна отношению числа благоприятных исходов к числу всех исходов:
.
Ответ:
.
3. Найдите вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому
Решение
Воспользуемся классическим определением вероятности. Двузначные числа начинаются с 10 и заканчиваются 99 и всего их 90, т.е. N= 90. Теперь посчитаем, сколько у нас чисел кратных либо 4, либо 5, либо тому и другому.
Число кратное 4-м имеет вид , кратное 5
, кратное 4 и 5
.
В интервале от 10 до 99 всего числа кратных четырем (2 кратных до десяти),
чисел кратных пяти (1 кратное до 10) и
числа кратных и четырем и пяти.
Так как множество чисел кратных 4 и множество чисел кратных 5 не пересекаются, то всего получается 22 + 18 = 40 чисел удовлетворяющих необходимому нам условию, причем числа кратные и четырем и пяти уже входят в эти 40 чисел. В итоге получаем, что вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому равна .
Ответ:
.
4. В партии 10 деталей, из которых 8 стандартные. Из этой коробки наудачу извлекается 2 детали. Х – число стандартных деталей. Найти закон распределения, функцию распределения дискретной случайной величины Х, а также основные числовые характеристики
Решение
Среди 2-х извлеченных деталей может быть 0, 1 или 2 стандартные.
Найдем вероятность каждого исхода.
0 стандартных:
1 стандартная:
2 стандартных:
Закон распределения принимает вид:
Х | 0 | 1 | 2 |
р | ![]() |
![]() |
![]() |
Запишем функцию распределения полученной случайной величины Х:
Математическое ожидание М(Х) дискретной случайной величины находится по формуле:
, и подставляя данные, получим:
Дисперсию дискретной случайной величины можно вычислить по формуле:
, и, подставляя данные, получим:
Среднеквадратичное отклонение:
s(Х)=
Ответ:
;
;
.
5. По данной выборке постройте полигон. Найти эмпирическую функцию.
Хi | 2 | 5 | 7 | 8 |
Ni | 1 | 3 | 2 | 4 |
Решение
Построим полигон частот – ломаную, соединяющую точки с координатами (Хi ; Ni ).
Объем выборки равен N = 1 + 3 + 2 + 4 = 10.
Найдем относительные частоты и составим эмпирическую функцию распределения:
Хi | 2 | 5 | 7 | 8 |
wi | 0,1 | 0,3 | 0,2 | 0,4 |
Ответ: решение выше.
Похожие работы
-
Общий аналитический метод решения алгебраических уравнений четвертой степени
Общий аналитический метод решения алгебраических уравнений четвертой степени Валентин Подвысоцкий Уравнение: X4 + TX2 + PX + Q = 0 имеет четыре корня X1, X2, X3, X4.
-
Решение задач по курсу теории вероятности и математической статистики
Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
-
Уравнения с параметрами
Введение Глава 1. §1. Теоретические основы решения уравнений с параметрами. §2. Основные виды уравнений с параметрами. Глава 2. §1. Разработка факультативных занятий по теме.
-
Метод Крамера
Министерство рыбного хозяйства Владивостокский морской колледж ТЕМА: “ Системы 2-х , 3-х линейных уравнений. Правило Крамера. ” г. Владивосток
-
Решение задач по эконометрике 2
Задача 1 Вариант Провести корреляционно регрессионный анализ в зависимости выплаты труда от производительности труда для этого: 1. Построить поле корреляции и выбрать модель уравнения.
-
Теория вероятности
Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.
-
Об обучении математике на подготовительных курсах
Система занятий по математике предполагает не только подготовку к сдаче вступительного экзамена, а и подготовку к продолжению образования через обогащение индивидуального ментального опыта.
-
Основы теории вероятностей
Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.
-
Системы 2-х, 3-х линейных уравнений, правило Крамера
Краткая теория. Методические рекомендации по выполнению заданий. Примеры выполнения заданий.
-
Общий аналитический метод решения алгебраических уравнений четвертой степени
Типовые методы решения уравнений.