Название: Методика регрессионного анализа
Вид работы: контрольная работа
Рубрика: Математика
Размер файла: 414.37 Kb
Скачать файл: referat.me-215424.docx
Краткое описание работы: Министерство науки и образования Украины Национальный технический университет Украины "Киевский политехнический институт" Радиотехнический факультет
Методика регрессионного анализа
Министерство науки и образования Украины
Национальный технический университет Украины
"Киевский политехнический институт"
Радиотехнический факультет
Контрольная работа
По курсу: "Основы научных исследований"
Тема: "Методика регрессионного анализа"
Киев 2007
Нахождение коэффициентов регрессии модели полнофакторного эксперимента типа 23
Факторный эксперимент связан с варьированием одновременно всех факторов и проверкой достоверности результатов математико-статистическими методами. Факторы в эксперименте можно варьировать на бесконечном множестве уровней. При планировании эксперимента, чтобы получить результаты эксперимента в виде удобных для анализа полиномов, достаточно изменять факторы на двух, трех или пяти уровнях. Проведение экспериментов с многоуровневыми факторами затруднительно, поэтому они находят ограниченное применение в практике инженерного эксперимента.
Таблица 1
Номер комбинации |
Факторы | Произведения факторов | Параметры оптимизации (экспертная оценка) |
Параметр оптимизации |
||||||||
_ | Ф | И | С | |||||||||
x0 | x1 | x2 | x3 | x1x2 | x1x3 | x2x3 | x1x2x3 | y1 | y2 | y3 | ![]() |
|
1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 31 | 28 | 47 | 35,3 |
3 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 12 | 9 | 10 | 10,3 |
4 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 60 | 52 | 64 | 58,7 |
5 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 3 | 2 | 2 |
6 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 54 | 59 | 50 | 54,3 |
7 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 41 | 41 | 40 | 40,7 |
8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 91 | 92 | 90 | 91 |
Среднее значение | 24,8 |
Модель для ПФЭ типа выглядит следующим образом:
Коэффициенты уравнения регрессии по методу наименьших квадратов в матричной форме определяем следующим образом [1, с. 53-55]:
Выражение - квадратная симметричная матрица – называется матрицей системы нормальных уравнений, или информационной матрицей (матрицей Фишера);
– ковариационная матрица, или матрица дисперсий ковариаций.
Ковариация показывает величину статистической взаимосвязи между эффектами модели xi и xj :
Также коэффициенты ковариаций можно определить из ковариационной матрицы:
Из матрицы видно, что коэффициенты ковариаций каждого эффекта с каждым равны нулю, отсюда делаем вывод, что коэффициенты уравнения регрессии не коррелированны между собой.
Проверка многофакторных статистических моделей по основными критериям качества
Проверка на статистическую значимость получаемой математической модели [1, с. 93-94]
Проводиться проверка статистической гипотезы о силе влияния факторов плана эксперимента на фоне случайной изменчивости повторных опытов:
Где – среднее значения результатов опытов в u
-той строке матрицы результатов;
– среднее значение по всем результатам опытов;
- результат в u
-той строке l
-го повторного опыта;
(n – количество повторных опытов (2))
По таблице (приложение 3) определяем 3,73
Поскольку (53,935>3,73), то делаем положительный вывод о целесообразности получения математической модели.
Проверки предпосылок о свойствах случайных ошибок входящие в результаты экспериментов [1, с. 93]
При равномерном дублировании опытов nu = n = const (в нашем случае n = 2). Проверка однородностиряда дисперсий производиться с использованием G -критерия Кохрена:
- вычисляется по формуле:
Число степеней свободы, которыми обладает каждая из дисперсий: n – 1 = 1;
Количество независимых оценок дисперсий: N = 8
По указанным индексам находим значение из таблицы "Критерий Кохрена" (приложение 1)
Так как то делаем вывод, что дисперсии однородны и могут быть усреднены:
Проверка на адекватность полученной модели произвольным результатам экспериментов в пределах принятых изменений факторов [1, с. 94-95]
Проверка коэффициентов уравнения регрессии на статистическую значимость проводиться с помощью t -критерия:
Для значения α = 0,05, получим α/2 = 0,025 и значение t-критерия Стьюдента равно
. Поскольку в матрице дисперсий-ковариаций не нулевые только диагональные элементы и равны между собой (
), то все доверительные интервалы равны между собой:
Теперь проверим все коэффициенты на статистическую значимость исходя из условия: если – то коэффициент статистически значим, если
– то коэффициент статистически не значим.
коэффициент | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 |
![]() |
36,542 | 23,292 | 13,625 | 10,458 | 1,375 | 2,375 | 5,208 | 1,875 |
Статистически значим | + | + | + | + | - | + | + | - |
Таким образом мы получили, что коэффициенты b 4 и b 7 – статически не значимы, поэтому мы не будем вносить их в нашу модель. И окончательный вид модели будет таким:
Число = 6 – количество эффектов, которые вошли в структуру модели, то есть статистически значимые.
Значения откликов, полученных с помощью последней модели:
Отклик | y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 |
![]() |
-3.25 | 38.584 | 13.584 | 55.418 | 2.5 | 53.834 | 40.166 | 91.5 |
![]() |
3.25 | 3.251 | 3.251 | 3.249 | 0.5 | 0.499 | 0.501 | 0.5 |
Проверка модели на адекватность производиться с использованием F -критерия Фишера:
Где – числа степеней свободы для
и
:
Просчитаем экспериментальное значение:
По таблицам значения критерия Фишера (приложения 3) для q = 0,05 находим:
Так как выполняется условие значит модель адекватна.
Так как у нас , то нет необходимости определять значимость обратного отношения дисперсий.
Проверка на информативность [1, с. 97-99]
Коэффициент множественной корреляции R определяется по формуле:
Посчитанное значение R = 0,997 которое очень близко к единице.
Гипотезу о значимости множественного коэффициента корреляции проверяют по F -критерию:
Где – суммы квадратов отклонений – связанная с
коэффициентом модели и остаточная;
– числа степеней свободы для
и
.
В нашем случае:
По таблицам значения критерия Фишера для q = 0,05 находим:
Поскольку , то гипотеза о статистической незначимости R
не принимается – это значит, что коэффициент множественной корреляции R
является статистически значимым.
Проверка на устойчивость коэффициентов математической модели к случайным составляющим в исходной информации [1, с. 99-101]
Коэффициенты математической модели должны быть устойчивы к малым случайным изменениям в исходных данных, полученных в процессе эксперимента. Для количественно показателя устойчивости коэффициентов математической модели будем использовать меру обусловленности матрицы по Нейману-Голдстейну.
Для определения меры обусловленности по Нейману-Голдстейну P
необходимо найти собственные числа для матрицы Фишера , решая уравнение:
Где – собственные числа для информационной матрицы Фишера
Поскольку коэффициенты b
4
и b
7
статистически незначимы, тога соответствующие столбцы матрицы X
отбрасываются и размер матрицы становится , размер обратной матрицы -
, а размер матрицы Фишера -
:
Так как все эффекты в матрице Фишера ортогональны друг другу и нормированы, то:
Находят – максимальное и минимальное собственное число для информационной матрицы Фишера
:
Мера обусловленности по Нейману-Голдстейну:
Другая мера обусловленности матрицы обозначается латинским сокращением cond
:
- обозначение нормы матрицы. При этом предполагается, что матрица
невырождена.
Известны несколько видов норм для матрицы А . Каждой из векторных норм соответствует своя подчиненная норма матрицы. Будем использовать следующую форму:
что означает выбор по всем столбцам j максимальной суммы абсолютных значений элементов по строкам i (m – число строк матрицы А ).
Так как все эффекты в расширенной матрице X ортогональны друг другу, то:
Для матрицы каждая по столбцам
. Для матрицы
каждая по столбцам
.
Число обусловленности в этом случае будет:
Что подтверждает результат, полученный предыдущим методом.
Проверка фактической эффективности извлечения полезной информации из исходных данных [1, с. 101-102]
Косвенным показателем эффективности может быть число обусловленности cond
для полученной модели. Так как значит эффективность можно считать хорошей.
Проверка правильности описания полученной математической модели по всей области моделирования [1, с. 102]
Полученную математическую модель желательно проверить по контрольной выборке. С использованием ПС ПРИАМ можно построить трехмерное изображение поверхности отклика, и проанализировать полученную поверхность, сравнивая минимальные и максимальные расчетные значения с допустимыми физическими значениями отклика. Возможен также поиск минимума и максимума по модели
с использованием ЛПτ равномерно распределенных последовательностей и сравнения с физически возможными значениями отклика.
Оценка семантичности по полученным коэффициентам математической модели [1, с. 102-103]
Семантичность достигается, если эффекты статистической модели ортогональны друг другу, нормированы и план эксперимента равномерный. Выбор структуры модели должен быть проведен с использованием алгоритма RASTA3 и ПС ПРИАМ.
В нашем случае все эффекты полученной модели ортогональны друг другу и нормированы, план эксперимента мы выбрали равномерный, следовательно семантичность достигается.
Проверка свойств остатков [1, с. 103, 364-366]
Анализ основных графиков остатков
Общая оценка свойств полученной математической модели и возможностей ее использования для достижения поставленной цени
Из вышеприведенных расчетов и проверок можно сделать вывод, что данная математическая модель является адекватной для ее использования в поставленных задачах.
Литература
1. Рядченко С.Г. Устойчивые методы оценивания статистических моделей. Монография. – К.: ПП "Санспарель", 2005. – 504 с.
2. Большов Л.Н., Смирнов Н.В. Таблицы математической статистики
Приложения
1. Значение критерия Кохрена G1- q для q = 0,05. Все значения G1- q меньше единицы, поэтому в таблице приведены лишь знаки, следующие после запятой.
2. Значения критерия Стьюдента (t - критерия)
3. Значения критерия Фишера F1- q для q = 0,05
Похожие работы
-
Нелинейная теория функции Зильберта в частных производных
Министерство Образования и Науки Украины Харьковский национальный университет имени Н.Н. Зильберта А.А. Тензор, В.В. Невязкин Нелинейная теория функции Зильберта
-
Колебательно движение материальной точки
Министерство образования и науки Российской Федерации Санкт-Петербургский государственный горный институт имени В.Г. Плеханова (технический университет)
-
Проверка больших чисел на простоту
Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ Лабораторная работа №4
-
Модель гонки вооружений Ричардсона
Министерство образования и науки Украины Харьковский национальный университет радиоэлектроники Кафедра ЕК Курсовой проект по дисциплине «Моделирование экономической динамики»
-
по теории вероятности2
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОРОНЕЖСКИЙ ИНСТИТУТ ВЫСОКИХ ТЕХНОЛОГИЙ Факультет заочного и послевузовского обучения КОНТРОЛЬНАЯ РАБОТА №2
-
Доказательство Великой теоремы Ферма с помощью Малой теоремы
Файл: FERMA-PR-ABCfor © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 28607 ДОКАЗАТЕЛЬСТВО BЕЛИКОЙ ТЕОРЕМЫ ФЕРМА C ПОМОЩЬЮ МАЛОЙ ТЕОРЕМЫ ФЕРМА
-
Доказательство великой теоремы Ферма 5
Файл: FERMA-forum © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 29316 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА Оригинальный метод
-
Теория вероятностей и математическая статистика
Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.
-
Исследование математических операций
Министерство образования и науки Украины Днепропетровский Национальный Университет Факультет электроники, телекоммуникаций и компьютерных систем
-
Логика формальная и графическая модель описания изготовления винных изделий
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Государственный университет информатики и искусственного интеллекта Кафедра системного анализа и моделирования