Название: Доказательство великой теоремы Ферма 5
Вид работы: статья
Рубрика: Математика
Размер файла: 31.9 Kb
Скачать файл: referat.me-217843.docx
Краткое описание работы: Файл: FERMA-forum © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 29316 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА Оригинальный метод
Доказательство великой теоремы Ферма 5
Файл : FERMA-forum
© Н . М . Козий , 2009
Авторские права защищены
свидетельством Украины
№ 29316
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Оригинальный метод
Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):
А n + В n = С n /1/
где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.
Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:
А n = С n - В n /2/
Рассмотрим решения уравнений /1/ и /2/ при нечетных значениях показателя степени n ипри любых четных значениях показателя степени n .
Вариант 1: показатель степени n - нечетное число
Путем алгебраического преобразования уравнения /1/, методика которого здесь не приводится, получим следующее уравнение в общем виде:
Cn = An + Bn = (A+B)n - n∙ AB∙(A+B)∙N, /3/
где N – всегда целое число, равное:
N=[(A+B)n –(An +Bn )]/n∙AB(A+B) /4/
Отсюда: Cn = An + Bn = (A+B)[ (A+B)n-1 - n∙ AB∙N]; /5/
Cn = An + Bn = (A+B)n [ 1 - n∙ AB∙N/(A+B)n-1 ] /6/
Обозначим: 1 - n∙ AB∙N/(A+B)n-1 =R
Тогда уравнение /6/ запишется следующим образом:
Cn = An + Bn = (A+B)n · R /7/
Значения числа Cn , определенные по формулам /5/, /6/ и /7/, равные между собой целые числа, так как эти формулы эквивалентны. Однако очевидно, что число R – дробное число < 1. Из формулы /7/ следует:
C
=
= (
A
+
B
)∙
/8/
Поскольку число -
дробное иррациональное число <1,
то число C
– дробное число.
Следовательно, великая теорема Ферма не имеет решения при нечетных показателях степени n .
Вариант 2: показатель степени n любое четное число
В этом случае путем алгебраического преобразования уравнения /2/ с помощью метода, который здесь также не приводится, получим следующее уравнение:
An = Cn – Bn =(C + B)n ∙[ 1 - B∙N/(C +B)n-1 ], /9/
где N - целое число, равное:
N= [(C+B)n – (Cn – Bn )]/B∙(C+B).
Очевидно, что: 1 - B ∙ N /( C + B ) n -1 = R - дробное число <1.
Уравнение /9/ в этом случае будет иметь вид:
An = Cn – Bn =( C + B ) n ∙ R
А число A будет равно:
A
=(
C
+
B
)∙
Поскольку число
- дробное иррациональное число <1,
то число A
– дробное число. Поэтому и при четных показателях степени n
великая теорема Ферма не имеет решения в целых положительных числах.
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах.
P.S. При получении уравнений /6/ и /9/ использовался бином Ньютона.
В правильности приведенных здесь формул вы можете убедиться на конкретных числовых примерах.
Вариант 1: возьмите любые значения чисел A и B и нечетное значение показателя степени n , определите значение числа Cn сначала по формуле /1/, а затем по формуле /6/ и вы убедитесь, что они равны между собой.
Вариант 2: возьмите любые значения чисел C и B и четное значение показателя степени n , определите значение числа An сначала по формуле /2/, а затем по формуле /9/ и вы убедитесь, что они равны между собой.
Следовательно, расчеты по приведенным здесь формулам /6/ и /9/ из доказательства великой теоремы Ферма, выполненного мной с использованием бинома Ньютона, подтверждают, во-первых, правильность этих формул, а во-вторых, то, что великая теорема Ферма не имеет решения в натуральных числах.
Похожие работы
-
Доказательство Великой теоремы Ферма для степени n 3 2
Файл: FERMA-n3-new © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма формулируется следующим образом: диофантово уравнение:
-
Доказательство Великой теоремы Ферма с помощью Малой теоремы
Файл: FERMA-PR-ABCfor © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 28607 ДОКАЗАТЕЛЬСТВО BЕЛИКОЙ ТЕОРЕМЫ ФЕРМА C ПОМОЩЬЮ МАЛОЙ ТЕОРЕМЫ ФЕРМА
-
Простое доказательство великой теоремы Ферма
Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
-
Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора
Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.
-
Доказательство Великой теоремы Ферма для степени n 3
Файл: FERMA-n3-algo © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма для показателя степени n=3 формулируется следующим образом: диофантово уравнение:
-
Доказательство великой теоремы Ферма для четных показателей степени
Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
-
Доказательство великой теоремы Ферма
Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
-
Доказательство великой теоремы Ферма
Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
-
Доказательство теоремы Ферма для n=4
Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
-
Краткое доказательство великой теоремы Ферма
Теорема Ферма, ее формулировка и доказательство в случаях, если показатель степени n - нечетное число и если n - четное число. Теорема о единственности факторизации. Дополнительные обоснования теоремы. Состав наибольшего составного числового множителя.