Название: Приложения определенного интеграла к решению некоторых задач механики и физики
Вид работы: учебное пособие
Рубрика: Математика
Размер файла: 33.33 Kb
Скачать файл: referat.me-215805.docx
Краткое описание работы: Моменты и центры масс плоских кривых. Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности.
Приложения определенного интеграла к решению некоторых задач механики и физики
Приложения определенного интеграла к решению некоторых задач механики и физики
1. Моменты и центры масс плоских кривых.
Если дуга кривой задана уравнением y
=
f
(
x
),
a
≤
x
≤
b
, и имеет плотность 1
) =
(
x
)
, то статические моменты этой дуги Mx
и My
относительно координатных осей Ox
и O
y равны
моменты инерции I Х и I у относительно тех же осей Ох и Оу вычисляются по формулам
а координаты центра масс и
— по формулам
где l — масса дуги, т. е.
Пример 1. Найти статические моменты и моменты инерции относительно осей Ох
и Оу дуги цепной линии y = chx при 0≤ x ≤ 1.
1
) Всюду в задачах, где плотность не указана, предполагается, что кривая однородна и =1.
◄ Имеем: Следовательно,
►
Пример 2. Найти координаты центра масс дуги окружности x=acost, y=asint, расположенной в первой четверти.
◄ Имеем:
Отсюда получаем:
►
В приложениях часто оказывается полезной следующая
Теорема Гульдена . Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.
Пример 3.
Найти координаты центра масс полуокружности
◄Вследствие симметрии . При вращении полуокружности вокруг оси Ох
получается сфера, площадь поверхности которой равна
, а длина полуокружности равна па. По теореме Гульдена имеем
Отсюда , т.е. центр масс C
имеет координаты C
.
2. Физические задачи. Некоторые применения определенного интеграла при решении физических задач иллюстрируются ниже в примерах 4—7.
Пример 4.
Скорость прямолинейного движения тела выражается формулой (м/с). Найти путь, пройденный телом за 5 секунд от начала движения.
◄ Так как путь, пройденный телом со скоростью (t
) за отрезок времени [t1
,t2
], выражается интегралом
то имеем:
►
Пример 5. Какую работу необходимо затратить для того, чтобы тело массы m поднять с поверхности Земли, радиус которой R, на высоту /i? Чему равна работа, если тело удаляется в бесконечность?
<4| Работа переменной силы / (#), действующей вдоль оси Ох на отрезке [а, Ь], выражается интегралом
Похожие работы
-
Конус, и все что с ним связано
КОНУС 1. Понятие конуса: тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса
-
Вычисление интегралов
Методика и основные этапы нахождения параметров: площади криволинейной трапеции и сектора, длины дуги кривой, объема тел, площади поверхности тел вращения, работы переменной силы. Порядок и механизм вычисления интегралов с помощью пакета MathCAD.
-
Формулы по математическому анализу
Формулы дифференцирования Таблица основных интегралов Правила интегрирования Основные правила дифференцирования Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие
-
Кривые второго порядка эллипс, окружность, парабола, гипербола
Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования Южно-Уральский государственный университет.
-
Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab
История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.
-
Папп Александрийский. Теоремы Паппа-Гульдена
В данной работе мы рассмотрим то немногое из биографии Паппа Алекасндрийского, что было нам приоткрыто из-за завесы веков и докажем одну из важнейших теорем интегрального исчисления – теорему Паппа-Гульдена.
-
Вычисление координат центра тяжести плоской фигуры
Министерство общего и профессионального образования Российской федерации. Уральский Государственный Технический Университет - УПИ. Реферат ВЫЧИСЛЕНИЕ КООРДИНАТ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ.
-
Все о Конусе
Муниципальное обще образовательное учреждение Средняя общеобразовательная школа №54 с углубленным изучение предметов социально-гуманитарного цикла центрального района города Новосибирска
-
Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа
Пошукова робота на тему: Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні. План Довжина дуги кривої в декартових і полярних координатах
-
Техника интегрирования и приложения определенного интеграла
Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.