Referat.me

Название: Нахождение площади живого сечения траншеи

Вид работы: реферат

Рубрика: Математика

Размер файла: 34.24 Kb

Скачать файл: referat.me-216230.docx

Краткое описание работы: 1. Формулировка проблемы. Сечение траншеи имеет форму близкую к сегменту параболы, ширина траншеи на её поверхности l метров наибольшая глубина H метров . найти площадь «живого сечения» траншеи , если она полностью заполнена водой.

Нахождение площади живого сечения траншеи

1. Формулировка проблемы.

Сечение траншеи имеет форму близкую к сегменту параболы, ширина траншеи на её поверхности l метров наибольшая глубина H метров . найти площадь «живого сечения» траншеи , если она полностью заполнена водой.

Дано:

l=1,5 Найти: S живого сечения траншеи

Н=2,25

2. Пояснение к решению.

· Прибавляя постоянную к первообразной какой-либо функции, вновь получают первообразную той же функции. Следовательно, имея одну первообразную F(x) функции f (x), получают общее выражение всех первообразных этой функции в виде F(x) + С. (Постоянная C называется произвольной постоянной). Это общее выражение первообразных называют неопределённым интегралом.

· Приращение первообразных функций F(x)+C при переходе аргумента x от значения x=a к значению x=b , равное разности F(b)-F(a) , называется определенным интегралом . Определённый интеграл - это число, в отличие от неопределённого интеграла, который является группой функций. Крайние точки области интегрирования называются границами интегрирования .Когда интеграл используется для вычисления площади, принято обозначать границы на двух концах знака интеграла и записывать так: .

· Функцию называют первообразной функции .

· -дифференциал функции и определяется следующим образом:

· Формула Ньютона-Лейбница. Если f(x) непрерывна на отрезке [a, b], и F(x) - некоторая первообразная функции , то

· Уравнение параболы имеет вид y=ax2 +bx+c.

· Определенный интеграл численно равен площади под графиком функции от которой он берется, причем площади на интервале интегрирования.

· нахождение неопределенного интеграла это операция обратная нахождению производной(дифференциированию).

4. Расчетная часть.

l=1,5 м

H=2,25 м

1)y=x2 +bx+c

2)y=ax2 +c

y=ax2 -2,25, т.к точка В с координатами (х=0,75;у=0) принадлежит параболе, то её координаты удовлетворяют уравнению параболы. =>

0=а◦0,752 -2,25; 0,752 ◦а=2,25; 0,5625◦а=2,25; а=2,25/0,5625; а=4

3)f(x)=4х2 -2,25

4) Найдем площадь «живого сечения»

Т.к части графика 1 и 2 идентичны, можно их представить как 2-е одинаковые части.

S=2◦2,4375=4,875 м2

Ответ: площадь «живого сечения» 4,875 м3

План:

1. Формулировка проблемы.

2. Пояснение к решению.

3. Графическая часть

4. Расчетная часть.

5. Выводы

6. Используемая литература.

Вывод

Выполнив работу я закрепила знания по теме определенный интеграл, его практическое применение и приложение в реальной жизни. С помощью исходных данных при заданных условиях научилась вычислять «живую площадь» траншеи.

6.Литература

Письменный Д.Т. - Конспект лекций по высшей математике.

Интернет-ресурсы.

Похожие работы

  • Конус, и все что с ним связано

    КОНУС 1. Понятие конуса: тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса

  • Математическое моделирование волнового движения воды в узком глубоком непризматическом водохранилище с учетом упругости воды

    Составлена математическая модель волнового движения воды в узком глубоком непризматическом водохранилище с учетом упругости воды. Модель представляет начально-краевую задачу математической физики для потенциала средней по ширине векторной скорости.

  • Законы движения планет

    Конические сечения играют в астрономии выдающуюся роль, причем не только в небесной механике, но и оптике, поэтому стоит уделить им особое внимание. Конические сечения образуются при пересечении прямого кругового конуса с плоскостью.

  • Призма 2

    ПРИЗМА Определение Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие в этих плоскостях, параллельны, называется призмой.

  • Геометрическая пирамида и ее проекция

    Презентацию готовили Ё Дасиева Роза, Ё Набоко Михаил, Ё Ибрагимова Карина, Ё Егизбаева Айнура, Ё Асанова Эльвира, Ё Ускенбаева Мадия. О слове пирамида.

  • Цилиндр

    Цилиндр-это фигура, состоящая из двух кругов, совмещаемых параллельным переносом и всех отрезков, соединяющих соответствующие точки этих кругов.

  • Поверхности второго порядка

    Основные характеристики поверхностей второго порядка: эллипсоида, однополосного и двуполостного гиперболоида, элиптического и гиперболического параболоида, конуса второго порядка.

  • Пирамида

    Описание. Решение задач.

  • Все о Конусе

    Муниципальное обще образовательное учреждение Средняя общеобразовательная школа №54 с углубленным изучение предметов социально-гуманитарного цикла центрального района города Новосибирска

  • Использование расчетных формул в задачах

    Определение центра тяжести сечения. Вычисление, при каком значении момента Х угол поворота правого концевого сечения вала равно нулю, построение эпюры крутящих моментов. Расчет значений осевых и центробежных моментов инерции, построение схемы сечения.