Название: Теорема Штольца
Вид работы: реферат
Рубрика: Математика
Размер файла: 147.43 Kb
Скачать файл: referat.me-217438.docx
Краткое описание работы: Применение теоремы Штольца к нахождению некоторых пределов отношения последовательностей, пределов отношения функций.
Теорема Штольца
Содержание работы:
1. Формулировка и доказательство теоремы Штольца.
2. Применение теоремы Штольца:
a) ;
b) нахождение предела “среднего арифметического” первых n значений варианты ;
c) ;
d) .
3. Применение теоремы Штольца к нахождению некоторых пределов отношения последовательностей.
4. Нахождение некоторых пределов отношения функций с помощью теоремы Штольца.
Для определения пределов неопределенных выражений типа
часто бывает полезна следующая теорема, принадлежащая Штольцу.
Пусть варианта , причем – хотя бы начиная с некоторого листа – с возрастанием n и
возрастает:
. Тогда
=
,
Если только существует предел справа (конечный или даже бесконечный).
Допустим, что этот предел равен конечному числу :
.
Тогда по любому заданному найдется такой номер N, что для n>N будет
или
.
Значит, какое бы n>N ни взять, все дроби ,
, …,
,
лежат между этими границами. Так как знаменатели их, ввиду возрастания yn
вместе с номером n, положительны, то между теми же границами содержится и дробь
, числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при n>N
.
Напишем теперь тождество:
,
откуда
.
Второе слагаемое справа при n>N становится <; первое же слагаемое, ввиду того, что
, также будет <
, скажем, для n>N’
. Если при этом взять N’
>N, то для n>N’
, очевидно,
, что и доказывает наше утверждение.
Примеры:
1. Пусть, например, . Отсюда, прежде всего вытекает, что (для достаточно больших n)
, следовательно, вместе с yn
и xn
, причем варианта xn
возрастает с возрастанием номера n. В таком случае, доказанную теорему можно применить к обратному
отношению
(ибо здесь предел уже конечен
), откуда и следует, что , что и требовалось доказать.
2. При а>1
Этот результат с помощью теоремы Штольца получается сразу:
3. Применим теорему Штольца к доказательству следующего интересного предложения:
Если варианта an
имеет предел (конечный или бесконечный), то этот же предел имеет и варианта
(“среднее арифметическое” первых n значений варианты аn ).
Действительно, полагая в теореме Штольца
Xn =a1 +a2 +…+an, yn =n,
Имеем:
Например, если мы знаем, что ,
то и
4. Рассмотрим теперь варианту (считая k-натуральным)
,
которая представляет неопределённость вида .
Полагая в теореме Штольца
xn =1k +2k +…+nk , yn =nk+1 ,
будем иметь
.
Но
(n-1)k+1 =nk+1 -(k+1)nk +… ,
так что
nk+1 -(n-1)k+1 =(k+1)nk +…
и
.
5. Определим предел варианты
,
представляющей в первой форме неопределенность вида , а во второй – вида
. Произведя вычитание дробей, получим на этот раз неопределенное выражение вида
:
.
Полагая xn равным числителю этой дроби, а yn – знаменателю, применим еще раз ту же теорему. Получим
.
Но ,
а ,
так что, окончательно,
.
Пример 1.
=
=
=
=
=
=
=
=
=
.
Пример 2.
=
==
==
==
==
==
=.
Пример 3.
=
=.
Теорема Штольца справедлива для последовательностей, но т.к. последовательности есть частный случай функций, то эту теорему можно обобщить для функций.
Теорема.
Пусть функция , причем, начиная с некоторой xk
, g(xk
+1)>g(xk
), т.е. функция возрастающая.
Тогда,
если только существует предел справа конечный или бесконечный.
Доказательство:
Допустим, что этот предел равен конечному числу k
.
Тогда, по определению предела
или
.
Значит, какой бы ни взять, все дроби
,
, …,
лежат между этими границами. Так как знаменатели их, ввиду возрастания g(xn
) вместе с x(n), положительны, то между теми же границами содержится и дробь , числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при
.
Напишем тождество(которое легко проверить):
,
Откуда
.
Второе слагаемое справа при становится
; первое же слагаемое, ввиду того, что
, так же будет
, скажем, для
. Если при этом взять
, то для
, очевидно
, что и доказывает теорему.
Примеры:
Найти следующие пределы:
1. очевидна неопределенность
=
=
=2
2. неопределенность
=
=
=
=0
3. неопределенность
=
=
=
Литература:
1. “Задачи и упражнения по математическому анализу” под редакцией Б.П.Демидовича. Издательство “Наука”, Москва 1996г.
2. Г.М.Фихтенгольц “Курс дифференциального и интегрального исчисления” Физматгиз 1962г. Москва.
Похожие работы
-
Формулы шпаргалка
Предел функции: Число А наз-ся пределом функции f(x) в точке x0 если для всех x достаточно близких к x0, отличных от x0 значения ф-ии f(x) сколь угодно мало отличаются от числа A.
-
Определение предела числовой функции
31. . Односторонние пределы. Свойства пределов. Число А называется пределом функции y=f(x) в точке х0, если для любой последовательности допустимых значений аргумента xn, n€N (xn≠x0), сходящейся к х0
-
Вычисление пределов
Санкт-Петербургское государственное образовательное учреждение среднего профессионального образования Согласовано: Предметной (цикловой) комиссией Председатель
-
Межа послідовності. Теорема Штольца
Теорія межі послідовності й межі функції як один з розділів математичного аналізу. Поняття межі послідовності, огляд характерних прикладів обчислення меж послідовності з докладним розбором рішення, специфіка теореми Штольца й приклади її застосування.
-
Основные определения и теоремы к зачету по функциональному анализу
Определения. Теоремы. Формулы.
-
Структура сходящихся последовательностей
Удмуртский государственный университет Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.
-
Основные определения и теоремы к зачету по функциональному анализу
Определение: Элемент наилучшего приближения – L – линейное многообразие, плотное в E. u: ║x-u║
-
Короткий курс теорії функції Зільберта
Министерство Образования и Науки Украины Харьковский национальный университет А.А. Тензор, В.В. Невязкин Краткий курс теории функции Зильберта (на русском и украинском языках)
-
Предел последовательности. Теорема Штольца
Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.
-
Введение в математический анализ 2
Введение в математический анализ. Числовая последовательность. Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана