Referat.me

Название: Основные определения и теоремы к зачету по функциональному анализу

Вид работы: шпаргалка

Рубрика: Математика

Размер файла: 49.29 Kb

Скачать файл: referat.me-217484.docx

Краткое описание работы: Определения. Теоремы. Формулы.

Основные определения и теоремы к зачету по функциональному анализу

Определение: Элемент наилучшего приближения – L – линейное многообразие, плотное в E. "e"xÎE $u: ║x-u║<e

Теорема: Для любого элемента нормированного пространства существует хотя бы один элемент наилучшего приближения из конечномерного подпространства.

Теорема: Для элемента из строго нормированного конечномерного пространства существует единственный элемент наилучшего приближения из конечномерного подпространства.

Теорема: Рисса о существовании почти ортогонального элемента. E-НП LÌE, "eÎ(0,1) $zeÎEL ║ze║=1 r(ze,L)>1-e

Определение: Полное нормированное пространство- любая фундаментальная последовательность сходиться.

Теорема: О пополнении нормированного пространства. Любое нормированное пространство можно считать линейным многообразием, плотным в некотором полном нормированном пространстве.

Определение: Гильбертово пространство – нормированное пространство, полное в норме, порожденной скалярным произведением.

Теорема: Для любого элемента гильбертова пространства существует единственный элемент наилучшего приближения в конечномерном подпространстве гильбертова пространства.

Определение: L плотное в E, если "xÎE$uÎL: ║x-u║<e

Теорема: Чтобы L было плотно в H- ортогональное дополнение к L состояло только из нулевого элемента.

Определение: Сепарабельное – нормированное пространство, содержащее некоторое счетное плотное в нем множество.

Определение: Ортогональное дополнение – множество элементов ортогональных к элементам данного пространства.

Определение: Линейный оператор – отображение, для которого A(ax+by)=aAx+bAy

Определение: Непрерывный оператор – Ax-Ax0 при x-x0

Определение: L(X,Y) – пространство линейных операторов

Теорема: Пусть X и Y – полные НП и A – непрерывен на некотором подпространстве пространства X, тогда он непрерывен на всем X.

Определение: Ограниченный оператор - "║x║≤1 $с: ║Ax║≤c

Теорема: A – ограниченный -"xÎX ║Ax║≤c║x║

Теорема: Для того чтобы А был непрерывен - чтобы он была ограничен

Теорема: {An} равномерно ограничена - {An}- ограничена.

Теорема: {Anx} – ограниченно - {║An║}- ограничена.

Определение: Сильная (равномерная) сходимость ║An-A║-0, n-¥, обозначают An-A

Определение: Слабая сходимость - "xÎX ║(An-A)x║Y-0, n-¥

Теорема: Для того, чтобы имела место сильная сходимость - {An} сходилась равномерно на замкнутом шаре радиуса 1

Теорема: Банаха-Штенгауза An-An-¥ слабо - 1) {║An║}- ограничена 2) An-A, x’ÌX, x’=x

Теорема: Хана Банаха. A:D(A)-Y, D(A)ÌX -$ A’:X-Y 1) A’x=Ax, xÎD(A) 2) ║A’║=║A║

Определение: Равномерная ограниченность - $a"x: ║x(t)║≤a

Определение: Равностепенная непрерывность "t1,t2 $d: ║x(t1)-x(t2)║<e

Теорема: L(X,Y) полное, если Y – полное.

Определение: Ядро – {xÎX | Ax=0}

Определение: Сопряженное пространство – пространство функционалов X*:=L(X,E)

Определение: Сопряженный оператор A*: Y*-X*

Теорема: Банаха A:X-Y и X,Y- полные нормированные пространства. Тогда $A-1 и ограничен.

Определение: Оператор А – обратимый

Определение: Оператор А- непрерывнообратимый если 1) A- обратим, 2) R(A)=Y, 3) A-1-ограничен.

Теорема: A-1 $ и ограничен -$m>0 "xÎX ║Ax║≥m║x║

Теорема: Рисса о представлении линейного функционала в гильбертовом пространстве. Пусть f:X-Y – линейный ограниченный функционал -$! yÎH"xÎHf(x)=(x,y)

Определение: MÌX называется бикомпактным, если из любой ограниченной последовательности можно выделить сходящуюся к элементам этого же множества последовательность.

Определение: Множество называется компактным, если любая ограниченная последовательность элементов содержит фундаментальную подпоследовательность.

Теорема: Хаусдорфа. MÌX компактно -"e>0 $ конечная e-сеть

Теорема: Арцела. MÌC[a,b] компактно - все элементы множества равномерно ограничены и равностепенно непрерывны.

Определение: Компактный (вполне непрерывный) оператор – замкнутый шар пространства X переводит в замкнутый шар пространства Y.

Определение: s(X,Y) – подпространство компактных операторов

Теорема: Шаудера. AÎs(X,Y) - A*Îs(X*,Y*)

Линейные нормированные пространства

1. Пространства векторов

сферическая норма

кубическая норма

ромбическая норма

p>1

2. Пространства последовательностей

p>1

или пространство ограниченных последовательностей

пространство последовательностей, сходящихся к нулю

пространство сходящихся последовательностей

3. Пространства функций

пространство непрерывных на функций

пространство k раз непрерывно дифференцируемых на функций

£p[a,b] пространство функций, интегрируемых в степени p (не Гильбертово)

- пополнение £p[a,b] (Гильбертово)

Неравенство Гёльдера p,q>0

Неравенство Минковского

Похожие работы

  • Системы линейных уравнений и неравенств

    Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

  • Доказательство Великой теоремы Ферма с помощью Малой теоремы

    Файл: FERMA-PR-ABCfor © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 28607 ДОКАЗАТЕЛЬСТВО BЕЛИКОЙ ТЕОРЕМЫ ФЕРМА C ПОМОЩЬЮ МАЛОЙ ТЕОРЕМЫ ФЕРМА

  • Доказательство великой теоремы Ферма 5

    Файл: FERMA-forum © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 29316 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА Оригинальный метод

  • Простое доказательство великой теоремы Ферма

    Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

  • Алгебраическое доказательство теоремы Пифагора

    Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.

  • Основные определения и теоремы к зачету по функциональному анализу

    Определение: Элемент наилучшего приближения – L – линейное многообразие, плотное в E.      u: ║x-u║

  • Доказательство Великой теоремы Ферма для степени n 3

    Файл: FERMA-n3-algo © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма для показателя степени n=3 формулируется следующим образом: диофантово уравнение:

  • Доказательство великой теоремы Ферма

    Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

  • Доказательство великой теоремы Ферма

    Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

  • Доказательство теоремы Ферма для n=4

    Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.