Referat.me

Название: Математические последовательности Предел функции

Вид работы: контрольная работа

Рубрика: Математика

Размер файла: 220.41 Kb

Скачать файл: referat.me-218096.docx

Краткое описание работы: Задание 1 Вычислите последовательности Решение. Рассмотрим последовательность для любого натурального Следовательно, множество является ограниченным сверху. Это означает, что последовательность

Математические последовательности Предел функции

Задание 1

Вычислите и последовательности .

Решение.

Рассмотрим последовательность .

для любого натурального

Следовательно, множество является ограниченным сверху. Это означает, что последовательность имеет верхнюю точную грань: .

Следовательно, множество не является ограниченным снизу. Это означает, что нижняя грань последовательности не существует.

Ответ. не существует


Задание 2

Пользуясь определением предела последовательности, докажите, что .

Доказательство.

Число называется пределом последовательности , если для любого положительного числа существует номер такой, что при выполняется неравенство .

Используя определение предела последовательности, докажем, что .

Возьмем любое число .

Если взять , то для всех будет выполняться неравенство . Следовательно, .

Доказано


Задание 3

Пользуясь определением предела функции, докажите, что .

Доказательство

Число называется пределом функции при , если для любого числа существует число такое, что для всех , удовлетворяющих неравенству , выполняется неравенство .

Используя определение предела функции, докажем, что .

Возьмем любое .

Положим .

Если взять , то для всех , удовлетворяющих неравенству , выполняется неравенство . Следовательно, .

Доказано.


Задание 4

Вычислите предел .

Решение.

Ответ.

Задание 5

Вычислите предел .

Решение.

Ответ.


Задание 6

Вычислить предел .

Решение.

Ответ.

Задание 7

Вычислить предел .

Решение.

Ответ.

Задание 8

Вычислить предел .

Решение

Ответ.

Задание 9

Вычислить предел .

Решение.

Ответ.


Задание 10

Вычислить предел .

Решение.

Ответ.

Задание 11

Вычислить предел .

Решение.

Ответ.

Задание 12

Вычислить предел .

Решение.


Ответ.

Задание 13

Вычислить предел .

Решение.

Ответ.

Задание 14

Вычислить предел .

Решение.

при функция является бесконечно малой

для любого функция является ограниченной.

Известно, что произведение бесконечно малой функции и ограниченной функции есть бесконечно малая функция. Следовательно, функция является бесконечно малой при . Это означает, что .


Ответ.

Похожие работы

  • Интересная связь между числами Фибоначчи и пифагоровыми тройками

    Что общее может быть между числами Фибоначчи и пифагоровыми тройками? Что может связывать числа, которые образуют последовательность, начинающуюся двумя единицами, остальные члены которой получаются сложением двух предыдущих членов, с числами, квадрат одного из которых равен сумме квадратов двух других?

  • Вычисление пределов

    Санкт-Петербургское государственное образовательное учреждение среднего профессионального образования Согласовано: Предметной (цикловой) комиссией Председатель

  • Структура сходящихся последовательностей

    Удмуртский государственный университет Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.

  • Тригонометрия

    Шпаргалки по тригонометрии.

  • Числовая последовательность

    Содержание 1 Определение 2 Примеры 3 Операции над последовательностями 4 Подпоследовательности 4.1 Примеры 4.2 Свойства 5 Предельная точка последовательности

  • Тригонометрия

    Действительные числа: Теорема: R - несчётное множество. Док-во: метод от противного. Несчётность (0;1) X1=0,n11n12n13…n1k… m1О{0,1,…,9}{9,n11}

  • Предел последовательности. Теорема Штольца

    Определение и этапы доказательства теоремы Штольца, ее теоретическое и практическое значение в прикладной математике, применение. Понятие предела последовательности, характерные примеры вычисления пределов последовательности с подробным разбором решения.

  • Введение в математический анализ 2

    Введение в математический анализ. Числовая последовательность. Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана

  • Пределы Сравнение бесконечно малых величин

    Контрольная работа Дисциплина: Высшая математика Тема: Пределы. Сравнение бесконечно малых величин Содержание 1. Предел числовой последовательности

  • Существование решения дифференциального уравнения и последовательные приближения

    Теорема существования и единственности решения уравнения.