Referat.me

Название: Типовой расчет

Вид работы: контрольная работа

Рубрика: Математика

Размер файла: 183.97 Kb

Скачать файл: referat.me-218892.docx

Краткое описание работы: Условия и анализ заданий по математике: найти сумму ряда, область сходимости функционального ряда, исследовать ряд на сходимость, вычислить сумму ряда с точностью альфа, используя метод неопределённых коэффициентов, признак Даламбера и признак Лейбница.

Типовой расчет

1. Найти сумму ряда:

Решение.

Разложим знаменатель на множители.

Значит,

Разложим дробь , используя метод неопределённых коэффициентов.

то есть:

, ,

Следовательно,

Тогда, исходный ряд примет вид:

Найдём n – первые членов ряда, записывая дроби с одинаковыми знаменателями друг под другом:

=

=

=

=

=

=

=

=


Сложим n – первых членов ряда и найдём их сумму.

.

Тогда искомая сумма равна:

.

Ответ: .

2. Найти сумму ряда:

Решение.

Разложим дробь , используя метод неопределённых коэффициентов.

то есть:

, , ,

Следовательно,

Тогда, исходный ряд примет вид:

Найдём n – первых членов ряда , записывая дроби с одинаковыми знаменателями, друг под другом:

=

=

=

=

=

=

=

=

Сложим n – первых членов ряда

и найдём их сумму.

.

Тогда искомая сумма равна:

Ответ: .

3. Исследовать ряд на сходимость

Решение.

Так как , то рассмотрим ряд

, тогда


Воспользуемся признаком Даламбера.

,

Тогда,

Так как , то ряд сходится. Значит, исходный ряд сходится по теореме о сравнении рядов.

Ответ: Ряд сходится.

4. Исследовать ряд на сходимость

Решение.

Преобразуем n – член этого ряда.


Сравним ряд с рядом , пользуясь предельным признаком сравнения:

,

Тогда,

Поскольку А = 1 (0<A<+∞) – действительное число. Следовательно, ряды либо сходятся, либо расходятся. Ряд - является рядом Дирихле. Так как α = 3 > 1, то данный ряд сходится. Следовательно, и сравниваемый ряд тоже сходится.

Ответ: ряд сходится.

5. Исследовать ряд на сходимость


Решение.

Воспользуемся признаком Даламбера.

,

Находим m по формуле:

Тогда:

Так как , то ряд расходится.

Ответ: ряд расходится.

6. Исследовать ряд на сходимость


Решение.

Рассмотрим ряд

.

Поскольку при :

Воспользуемся признаком Даламбера.

,

Находим m по формуле:

Тогда:


Так как , то ряд сходится.

Согласно признаку сравнения сходится и ряд .

Ответ: ряд сходится.

7. Вычислить сумму ряда с точностью α..

α. = 0,001.

Решение.

Прежде чем находить сумму ряда необходимо убедиться, что данный ряд сходится. Проверим исходный ряд на сходимость.

- числовой знакочередующейся.

Воспользуемся признаком Лейбница:


1)

2)

Следовательно, ряд условно сходится.

Проверим абсолютную сходимость ряда . Рассмотрим ряд .

Воспользуемся признаком Даламбера:

,

Находим m по формуле:

Тогда:


Следовательно, ряд

сходится абсолютно.

Вычисляем члены ряда с точностью до 4 цифр после запятой до тех пор, пока какой-нибудь член ряда по модулю не будет меньше α. = 0,001:

а1 = -1,5 а2 = 0,1042 а3 = - 0,0016 а4 = 0,0000093

Для приближённого вычисления ряда достаточно первых трех членов ряда (по следствию признака Лейбница: сумма сходящегося знакопеременного числового ряда не превышает его первого члена). Следовательно, ошибка при вычислении не превысит 0,0000093, а, значит, и . Требуемая точность достигнута.

Следовательно:

.

Ответ: .

8. Найти область сходимости функционального ряда

Решение.

Рассмотрим два интервала:

1)

Проверим необходимый признак сходимости рядов:

Необходимый признак не выполняется. Следовательно, при ряд расходится.

2) , то есть

Проверим необходимый признак сходимости рядов:

Необходимый признак не выполняется. Следовательно, при ряд расходится.

При имеем:

то есть ряд расходится.

Окончательно, получаем ряд расходится при любом Х

Ответ:

9. Найти область сходимости функционального ряда


Решение.

Воспользуемся признаком Даламбера:

.

В данном примере:

,

.

Следовательно, ряд сходится при любом Х, т.е.

Ответ: .

10. Найти сумму ряда:


Решение.

Найдём область абсолютной сходимости ряда, пользуясь признаком Даламбера:

то есть . Ряд сходится для тех значений Х, для которых , то есть , .

При ряд расходится, так как .

Следовательно, .

Перепишем данный ряд:

Обозначим сумму трёх рядов через , и соответственно, тогда

.


Определяем область сходимости этих рядов, пользуясь признаком Даламбера:

1) :

то есть . Ряд сходится для тех значений Х, для которых , то есть , .

Следовательно, .

2) :

то есть . Ряд сходится для тех значений Х, для которых , то есть , .

Следовательно, .

3) :

то есть . Ряд сходится для тех значений Х, для которых , то есть , .

Следовательно, .

Найдём сумму ряда .

Это сумма бесконечной геометрической прогрессии: , тогда:

.

Найдём сумму ряда .

.

Обозначим сумму ряда в скобках за и проинтегрируем:

.


Продифференцируем :

.

Отсюда:

сумму ряда .

.

Обозначим сумму ряд в скобках за и проинтегрируем:

.

Тогда, продифференцируем :


Отсюда:

.

Следовательно:

для всех .

Ответ: для всех .

Похожие работы

  • Числовые ряды 3

    Числовые ряды Основные понятия Числовым рядом называется выражение вида – действительные или комплексные числа, называемые членами ряда общим членом

  • Решение дифференциальных уравнений

    Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.

  • Высшая математика

    Основные теоремы и определения.

  • Билеты по математическому анализу

    Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № Сформулируйте понятие полного дифференциала функции двух переменных и объясните его геометрический смысл.

  • Знакочередующиеся и знакопеременные ряды

    Знакочередующиеся и знакопеременные ряды Содержание 1. Признак Даламбера 2. Признак Коши 3. Интегральный признак сходимости ряда 4. Знакочередующиеся ряды. Признак Лейбница

  • Сходимость рядов

    КОНТРОЛЬНАЯ РАБОТА № 9 ВАРИАНТ 9.3. Найти область сходимости указанных рядов 9.3.1. По признаку Лейбница для знакопеременных рядов ряд сходится условно (соответствующий ряд Дирихле расходиться)

  • Числовые ряды

    ВЫСШАЯ МАТЕМАТИКА Числовые ряды Содержание Лекция. Числовые ряды 1. Определение числового ряда. Сходимость 2. Основные свойства числовых рядов 3. Ряды с положительными членами. Признаки сходимости

  • Интегралы. Функции переменных

    Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.

  • Интегралы, объем тела вращения, метод наименьших квадратов

    Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.

  • Степенные ряды

    Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.