Название: Случай бесконечной плотности объемного заряда и бесконечного суммарного заряда
Вид работы: статья
Рубрика: Математика
Размер файла: 18.87 Kb
Скачать файл: referat.me-215874.docx
Краткое описание работы: Cлучаи c бесконечной плотностью заряда ρ физически абсолютно невозможны, но они "появляются" в задачах с точечными зарядами, заряженными нитями и плоскостями. При этом возникают некоторые сложности, а именно: - неограниченность поля и потенциала.
Случай бесконечной плотности объемного заряда и бесконечного суммарного заряда
.
М.И. Векслер, Г.Г. Зегря
Cлучаи c бесконечной плотностью заряда ρ физически абсолютно невозможны, но они "появляются" в задачах с точечными зарядами, заряженными нитями и плоскостями. При этом возникают некоторые сложности, а именно: - неограниченность поля и потенциала;
- ρ = ± ∞ - как записать уравнение Пуассона?
- поле точечного заряда (): пытаемся посчитать div, а получается ноль - где же заряд?
- невозможность наличия каких-либо диэлектриков: если , то любой диэлектрик пробивается.
Преодолеть математическую часть описанных сложностей можно путем записи ρ через δ-функцию. В частности,
ρ(x, y, z) | = | ![]() |
(20) |
ρ(x, y, z) | = | λ(z)·δ(x)δ(y) –бесконечная нить по оси z (заряд λ(z)) | |
ρ(x, y, z) | = | σ(y, z)·δ(x) –бесконечная плоскость yz (заряд σ(y, z)) |
Мы не будем применять такой подход. Вместо этого, мы далее считаем ρ конечной величиной, в то время как заряженные бесконечно тонкие поверхности, нити и точечные заряды рассматриваем отдельно.
Смежная проблема: бесконечный суммарный заряд и - как следствие - некорректное поведение потенциала на ∞. Такое происходит в декартовой системе при ρ = ρ(x) и в цилиндрической (ρ = ρ(r)). В реальной задаче этого быть не может, т.к. есть ограничение и по другим координатам. В учебных примерах либо должно быть обеспечен нулевой суммарный заряд (
), или же, понимая некорректность ситуации, необходимо задать φ = 0 в какой-либо точке не на бесконечности. Примером такой задачи является нахождение потенциала равномерно заряженного цилиндра.
Список литературы
1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.
2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.
3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.
Похожие работы
-
Проводники в электрическом поле. Электростатический метод изображений
Проводники в электрическом поле. Электростатический метод изображений. М.И. Векслер, Г.Г. Зегря Поле внутри проводника равно нулю, поэтому проводники геометрически ограничивают область, где должны решаться уравнения электростатики. На поверхности проводника φ = const (эквипотенциальность).
-
Потенциал поля
Работа сил электрического поля. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.
-
Формулы по алгебре, тригонометрии, электродинамике (Шпаргалка)
Revision 6.2 ( 19 October 2010 –
-
Моделирование электростатического поля
Метод моделирования электростатического поля имеет широкое применение на практике. Пользуясь этим методом, изучают сложные электростатические поля (в электростатических линзах, в электронных трубках и т.п.).
-
Расчет поля между эквипотенциальными поверхностями в неоднородной среде в отсутствие объемного заряда
Это типичная ситуация в конденсаторе. Для ее рассмотрения используется уравнение Пуассона с ρ = 0, которое интегрируется с учетом условий φ(x1) = φ1, φ(x2) = φ2 (для плоскостного случая) или φ(r1) = φ1, φ(r2) = &
-
Расчет электрических полей при наличии диэлектриков. Поляризованность. Связанный заряд.
Уравнения Максвелла и уравнение Пуассона применимы при наличии любых диэлектриков. Следует только помнить, что ε может зависеть от координат, и его в общем случае нельзя выносить из-под знака div.
-
Уравнения Максвелла для электростатики. Векторные операторы в различных системах координат
Векторные операторы (grad, div, rot), фигурирующие в уравнениях Максвелла, по-разному записываются в различных системах координат.
-
Вычисление емкости
Для расчета емкости можно ввести разность потенциалов между обкладками, решить уравнение Пуассона, найти D на обкладках, а затем плотность поверхностного заряда обкладок σ = ± Dn (Dn - это Dx или Dr у обкладки).
-
Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса
Рассмотрим пример сферической системы ρ = ρ(r), кроме того, возможно, имеются заряженные сферы (Ri, σi) и/или точечный заряд qc в центре.
-
Расчет поляризованности и плотности связанного заряда
Такие задачи могут быть решены как с привлечением теоремы Гаусса, так и посредством интегрирования уравнения Пуассона. Уравнение Пуассона более удобно, если где-либо требуется обеспечить наперед заданные величины потенциала.