Название: Расчет поля между эквипотенциальными поверхностями в неоднородной среде в отсутствие объемного заряда
Вид работы: статья
Рубрика: Математика
Размер файла: 47.87 Kb
Скачать файл: referat.me-215948.docx
Краткое описание работы: Это типичная ситуация в конденсаторе. Для ее рассмотрения используется уравнение Пуассона с ρ = 0, которое интегрируется с учетом условий φ(x1) = φ1, φ(x2) = φ2 (для плоскостного случая) или φ(r1) = φ1, φ(r2) = &
Расчет поля между эквипотенциальными поверхностями в неоднородной среде в отсутствие объемного заряда
М.И. Векслер, Г.Г. Зегря
Это типичная ситуация в конденсаторе. Для ее рассмотрения используется уравнение Пуассона с ρ = 0, которое интегрируется с учетом условий φ(x1) = φ1, φ(x2) = φ2 (для плоскостного случая) или φ(r1) = φ1, φ(r2) = φ2 (сфера, цилиндр). Рассмотрим далее случай плоскости.
![]() |
![]() |
![]() |
![]() |
Далее можно дифференцированием по x найти поле Ex и Dx:
![]() |
Следующий шаг - нахождение поляризованности и ее дивергенции, то есть связанного заряда ρ':
![]() |
В точках разрыва ε(x) (на стыке двух диэлектриков) производная ε'(x) обращается в бесконечность, формула для ρ' cтановится неприменимой и надо искать поверхностный связанный заряд:
![]() |
Обязательно проверяются условия на границах (в данном случае x1, x2) на наличие поверхностного связанного заряда:
![]() |
В сферическом и цилиндрическом случаях надо правильно писать div в соответствующей системе координат. Выражения для φ(r) принимают вид:
φ(r) | = | ![]() |
φ(r) | = | ![]() |
после чего Er(r) и связанные заряды находятся аналогично тому, как это было сделано выше для плоскостного (декартового) случая.
Задача. Получить выражения для φ(r), Er(r), ρ ', σ ' в случае цилиндрической и сферической симметрии, если заданы зависимость ε(r), а также потенциалы граничных поверхностей φ(R1(2)) = φ1(2). ρ = 0.
Указание: Для промежуточной проверки использовать вышеприведенные выражения для потенциала.
Задача. Пространство между обкладками плоского конденсатора шириной d заполнено неоднородным диэлектриком c проницаемостью ε(x) = 1+α x. Найти φ(x), Ex(x), ρ ', σ ' на обкладках.
Решение: Будем считать, что конденсатор занимает область координат x = 0... d, причем потенциал одной обкладки (x = 0) равен φ1 = 0, а другой φ2 = U. Тогда зависимость потенциала от координаты находится как
![]() |
после чего находим поле Ex(x) дифференцированием:
![]() |
и далее получаем поляризованность Px:
![]() |
Взяв дивергенцию, получаем объемный связанный заряд:
![]() |
и еще проверяем условия на обкладках на наличие поверхностного заряда σ ':
σ '|x = 0 | = | –Px|x = 0+ = 0 |
σ '|x = d | = | ![]() |
Как и следовало ожидать, σ '|x = 0 = 0, поскольку у обкладки x = 0 диэлектрическая проницаемость равнa единице. Если U>0, то σ '|x = d<0, что тоже естественно: у обкладки x = d должен концентрироваться отрицательный связанный заряд. Для проверки найдем суммарный связанный заряд на единицу площали обкладки конденсатора - этот заряд должен оказаться равным нулю. Действительно,
![]() |
= | ![]() |
= | ![]() |
|
= | ![]() |
Список литературы
1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.
2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.
3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.
Похожие работы
-
Утечка заряда в конденсаторах
Диэлектрик в конденсаторе обладает конечным удельным (Ом•см) сопротивлением , которое может зависеть от координат.
-
Расчет электрических полей при наличии диэлектриков. Поляризованность. Связанный заряд.
Уравнения Максвелла и уравнение Пуассона применимы при наличии любых диэлектриков. Следует только помнить, что ε может зависеть от координат, и его в общем случае нельзя выносить из-под знака div.
-
Уравнение Пуассона. Его применение для расчета полей в вакууме
В задачах, решаемых аналитически, φ и ρ обычно зависят только от одной координаты. При интегрировании можно вычислять интегралы как неопределенные, не забывая выписывать +const, а затем отдельно находить эти константы.
-
Случай бесконечной плотности объемного заряда и бесконечного суммарного заряда
Cлучаи c бесконечной плотностью заряда ρ физически абсолютно невозможны, но они "появляются" в задачах с точечными зарядами, заряженными нитями и плоскостями. При этом возникают некоторые сложности, а именно: - неограниченность поля и потенциала.
-
Вязкость газов в вакуумной технике
При перемещение твердого тела со скоростью за счет передачи количества движения молекулам газа возникает сила внутреннего трения.
-
Граничные условия на стыке двух диэлектриков. Теорема о циркуляции
Любая граница раздела двух сред может считаться плоской на достаточно малом участке. Кроме того, в пределах достаточно малого участка поле векторов можно считать однородным на каждой из сторон.
-
Вычисление емкости
Для расчета емкости можно ввести разность потенциалов между обкладками, решить уравнение Пуассона, найти D на обкладках, а затем плотность поверхностного заряда обкладок σ = ± Dn (Dn - это Dx или Dr у обкладки).
-
Расчет поля симметричного распределения зарядов в неоднородной среде по теореме Гаусса
Рассмотрим пример сферической системы ρ = ρ(r), кроме того, возможно, имеются заряженные сферы (Ri, σi) и/или точечный заряд qc в центре.
-
Расчет поляризованности и плотности связанного заряда
Такие задачи могут быть решены как с привлечением теоремы Гаусса, так и посредством интегрирования уравнения Пуассона. Уравнение Пуассона более удобно, если где-либо требуется обеспечить наперед заданные величины потенциала.
-
Исследование полупроводникового диода
Лабораторная работа. Изучение свойств плоскостного диода путём практического снятия и исследования его вольтамперной характеристики..