Referat.me

Название: Краткое доказательство гипотезы Билля

Вид работы: реферат

Рубрика: Математика

Размер файла: 52.17 Kb

Скачать файл: referat.me-216135.docx

Краткое описание работы: Гипотеза Билля формулируется следующим образом: неопределенное уравнение: не имеет решения в целых положительных числах А, В, С, при условии, что больше 2.

Краткое доказательство гипотезы Билля

Гипотеза Билля формулируется следующим образом: неопределенное уравнение:

А x y = С z /1/

не имеет решения в целых положительных числах А, В, С, x , y и z при условии, что x , y и z больше 2.

Суть гипотезы Билля не изменится, если уравнение /1/ запишем следующим образом:

А x = С z - В y /2/

Уравнение /2/ рассматриваем как параметрическое уравнение с параметром A и переменными B и С .

Уравнение /2/ запишем в следующем виде:

Аx = (С0,5 z )2 – (В0,5 y )2 /3/

Обозначим:

В0,5 y =V /4/

С0,5 z =U /5/

Отсюда:

Вy =V2 /6/

Сz =U2 /7/

В = /8/

С = /9/

Тогда из уравнений /2/, /6/ и /7/ следует:

Аx = Сz – Вy =U2 -V2 /10/

Уравнение /10/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:

Аx = (U-V)∙(U+V) /11/

Для доказательства гипотезы Билля используем метод замены переменных. Обозначим:

U-V=X /12/

Из уравнения /12/ имеем:

U=V+X /13/

Из уравнений /11/, /12/ и /13/ имеем:

Аx = X· (V+X+V)=X (2V+X)=2VХ+X2 /14/

Из уравнения /14/ имеем:

Аx – X2 =2VХ /15/

Отсюда:


V= /16/

Из уравнений /13/ и /16/ имеем:

U= /17/

Из уравнений /8/, /9/, /16/ и /17/ имеем:

B = /18/

C = /19/

Алгебраическое выражение включает в себе возведение чисел в степень, вычитание одного числа из другого и деление их разности на число.

Алгебраическое выражение включает в себе возведение чисел в степень, их сложение и деление суммы этих чисел на число.

Из анализа этих алгебраических выражений следует, что с помощью указанных математических действий нельзя получить числа, равные и соответственно, т.е.:

; /20/

, /21/

где: S и R должны быть целыми числами.

Поэтому в соответствии с уравнениями /18/, /19/, /20/ и /21/:

– дробное число;

– дробное число.

Таким образом, числа В и С – дробные числа.

Следовательно, гипотеза Билля не имеет решения в целых положительных числах.

Похожие работы

  • Доказательство Великой теоремы Ферма для степени n 3 2

    Файл: FERMA-n3-new © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма формулируется следующим образом: диофантово уравнение:

  • Доказательство великой теоремы Ферма 5

    Файл: FERMA-forum © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 29316 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА Оригинальный метод

  • Простое доказательство великой теоремы Ферма

    Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

  • Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора

    Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

  • Гипотеза Биля

    Доказательство гипотезы Биля методами элементарной алгебры: сочетание методов решения параметрических уравнений и замены переменных (теорема Ферма). Ее формулировка в виде неопределенного уравнения, которое не имеет решения в целых положительных числах.

  • Доказательство великой теоремы Ферма

    Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

  • Доказательство великой теоремы Ферма

    Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

  • Доказательство теоремы Ферма для n=4

    Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

  • Краткое доказательство гипотезы Биля

    Гипотеза Биля как неопределенное уравнение, не имеющее решения в целых положительных числах. Использование метода замены переменных. Запись уравнения в соответствии с известной зависимостью для разности квадратов двух чисел. Наличие дробных чисел.

  • Краткое доказательство великой теоремы Ферма

    Теорема Ферма, ее формулировка и доказательство в случаях, если показатель степени n - нечетное число и если n - четное число. Теорема о единственности факторизации. Дополнительные обоснования теоремы. Состав наибольшего составного числового множителя.