Referat.me

Название: Теория вероятности

Вид работы: контрольная работа

Рубрика: Математика

Размер файла: 35.04 Kb

Скачать файл: referat.me-217766.docx

Краткое описание работы: Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.

Теория вероятности

Вариант 10

(для студентов, номера личных дел которых оканчиваются цифрой 0)

Контрольная работа №3


1. На первом станке обработано 20 деталей, из них семь с дефектами, на втором - 30, из них четыре с дефектами, на третьем - 50 деталей, из них 10 с дефектами. Все детали сложены вместе. Наудачу взятая деталь оказалась без дефектов.

Какова вероятность того, что она обработана на третьем станке?

Для решения этой задачи воспользуемся формулой Байеса:

Пусть Н1 , Н2 , … Нn – полная группа попарно несовместных событий гипотезы, А – случайное событие, тогда:

Введем гипотезы: Н1 – деталь обработана на первом станке, Н2 – деталь обработана на втором станке, Н3 – деталь обработана на третьем станке.

Введем событие А – купленная деталь оказалась без дефектов.

Тогда, по условию задачи:

Так как на первом станке было изготовлено 20-7 = 13 деталей без дефектов, то

На втором станке было изготовлено 30-4 = 26 деталей без дефектов, то

А на третьем станке было изготовлено 50-10 = 40 деталей без дефектов, то

По формуле полной вероятности получаем:

По формуле Байеса:

Ответ:

2. Сколько семян следует взять, чтобы с вероятностью не менее чем 0,9545 быть уверенным, что частость взошедших семян будет отличаться от вероятности р - 0,9 не более чем на 2% (по абсолютной величине)?

Решение

По условию, р=0,9, тогда q=0,1. Необходимо найти n. Необходимо, чтобы условие

выполнялось с вероятностью, не меньшей, чем 0,9545. Раскроем модуль и найдем границы для m:

По теореме Муавра-Лапласа:

По условию, ≥0,9545.

По математико-статистическим таблицам находим приближенное значение функции Лапласса:

Ф(Х) = 0,9545, где Х=.

Имеем: Ф(Х) = 2,0 , отсюда

Итак, следует взять не менее 900 семян.


3. Завод «Пино» (г. Новороссийск) отправил в Москву 2000 бутылок вина « Каберне». Вероятность того, что в пути может разбиться бутылка, равна 0,002.

Какова вероятность того, что в пути будет разбито не более пяти бутылок?

Если проводится n независимых испытаний, в каждом из которых событие А может наступить с одной и той же вероятностью, тогда вероятность Рn (m) того, что событие наступило m раз в этой серии испытаний можно найти:

Р(А) = ,

так как число n=2000 велико, а вероятность р=0,002 мала, то найдем:

то воспользуемся формулой Пуассона:

Искомая вероятность приближенно равна:

P = P2000 (0)+ P2000 (1)+ P2000 (2)+ P2000 (3)+ P2000 (4)+ P2000 (5)≈0,0183+0,0733+0,1465+0,1954+0,1954+0,1563 = 0,7852

Ответ: Р≈0,7852

4. Одна из случайных величин (X) задана законом распределения:

X 0 1 3
p 0,2 0,3 0,5

а другая (У) имеет биномиальное распределение с параметрами п=2,р=0,4.

Составить закон распределения их разности. Найти математическое ожидание и дисперсию этой случайной величины.

Найдем закон распределения для величины (Y):

y 0 1 2
p p0 =0,36 p1 =0,48 p2 =0,16

Z11 = X1 - Y1 = 0-0 = 0; p(Z11 ) = 0,2·0,36=0,072;

Z12 = X1 - Y2 = 0-1 = -1; p(Z12 ) = 0,2·0,48=0,096;

Z13 = X1 - Y3 = 0-2 = -2; p(Z13 ) = 0,2·0,16=0,032;

Z21 = X2 - Y1 = 1-0 = 1; p(Z11 ) = 0,3·0,36=0,108;

Z22 = X2 - Y2 = 1-1 = 0; p(Z11 ) = 0,3·0,48=0,144;

Z23 = X2 - Y3 = 1-2 = -1; p(Z11 ) = 0,3·0,16=0,048;

Z31 = X3 - Y1 = 3-0 = 3; p(Z11 ) = 0,5·0,36=0,018;

Z32 = X3 - Y2 = 3-1 = 2; p(Z11 ) = 0,5·0,48=0,024;

Z33 = X3 - Y3 = 3-2 = 1; p(Z11 ) = 0,5·0,16=0,08.


Итак, закон распределения разности имеет вид:

Z -2 -1 0 1 2 3
P 0,032 0,096+0,048=0,144 0,072+0,144=0,216 0,108+0,08=0,188 0,24 0,18

Мат. ожидание:

М(Z) = -2·0,032-1·0,144+0·0,216+1·0,188+2·0,24+3·0,18= -0,02+0,48+0,54 = 1

Проверка:

М(Х) = 0,3+1,5 = 1,8

М(Y) = np = 0,8

M(X-Y) = M(X) – M(Y) = 1,8-0,8 = 1.

Дисперсия:

D(Z) = M(Z2 )-[M(Z)]2

M(Z2 )=0,128+0,144+0+0,188+0,96+1,62 = 3,04

D(Z) = 3,04-1 = 2,04.

5. Полагая, что длина изготавливаемой детали есть нормально распределенная случайная величина с математическим ожиданием М{Х) = 10 и средним квадратическим отклонением δ = 2, найти вероятность того, что длина наугад взятой детали заключена в интервале (5; 6).

В каких границах (симметричных относительно М(Х)) будет заключена длина наугад взятой детали с вероятностью 0,95?

1.
2

Используя таблицу значений нормированной функции Лапласса, имеем:


Список использованной литературы

1. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. — 2-е изд., перераб. и доп.— М.: ЮНИТИ-ДАНА, 2004. - 573 с.

Похожие работы

  • Шпаргалка по Теории Вероятности

    1) свойство вероятности: 20 стр. Свойство 1. Вероятность невозможного события равна 0, т.е. Свойство 2. Вероятность достоверного события равна 1, т.е.

  • Определение вероятности событий

    КОНТРОЛЬНАЯ РАБОТА № 11 ВАРИАНТ 3 1. Монета подброшена 3 раза. Найти вероятность того: что герб появится два раза Применяя классическое определение вероятности, находим:

  • Ряд распределения функция распределения

    Задача 1 (5) Производится контроль партии из 4 изделий. Вероятность изделия быть неисправным равна 0,1. Контроль прекращается при обнаружении первого неисправного изделия. Х – число обследованных приборов. Найти:а) ряд распределения Х б)функцию распределения F(X), в ответ ввести F(3.5). в) m(x) г) d(x) д) p(1.5<X<3.5).

  • Предельные теоремы. Характеристические функции

    Теория вероятностей и закономерности массовых случайных явлений. Неравенство и теорема Чебышева. Числовые характеристики случайной величины. Плотность распределения и преобразование Фурье. Характеристическая функция гауссовской случайной величины.

  • Моделирование дискретной случайной величины по геометрическому закону распределения

    Распределение дискретной случайной величины по геометрическому закону распределения, проверка теоремы Бернулли на примере моделирования электрической схемы. Математическое моделирование в среде Turbo Pascal. Теоретический расчёт вероятности работы цепи.

  • Теория вероятности и математическая статистика

    Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.

  • Теория вероятности

    Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.

  • Формула Лапласа. Математическое ожидание

    Задача на определение вероятности попадания при одном выстреле первым орудием, при условии, что для второго орудия эта вероятность равна 0,75. Интегральная формула Лапласа. Решение задачи на определение математического ожидания случайной величины.

  • Вычисление случайных величин

    Задача №1. Двумерная случайная величина (X,Y) имеет равномерное распределение вероятностей в треугольной области ABC: где S – площадь треугольника ABC.

  • Законы распределения случайных величин. Доверительный интервал

    Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.