Название: Основные понятия математического анализа
Вид работы: изложение
Рубрика: Математика
Размер файла: 111.77 Kb
Скачать файл: referat.me-215810.docx
Краткое описание работы: Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.
Основные понятия математического анализа
Содержание
Двойные интегралы
Определение определенного интеграла
Правило вычисления двойного интеграла.
Вычисление объемов тел с помощью двойного интеграла
Вычисление площадей поверхностей фигур с помощью двойного интеграла.
Тройные интегралы
Вычисление объемов тел с помощью тройного интеграла.
Несобственные интегралы.
Дифференциальные уравнения.
1. Дифференциальные уравнения первого порядка с разделяющимися переменными
2. Однородные дифференциальные уравнения первого порядка
3. Линейные дифференциальные уравнения
4. Уравнения Бернулли
Дифференциальные уравнения второго порядка.
Три случая понижения порядка.
Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
Комплексные числа
Геометрическое изображение комплексных чисел
Действия над комплексными числами.
Произведение.
Частное.
Возведение в степень.
Извлечение корня
Ряды.
Числовые ряды.
Свойства числовых рядов.
Знакоположительные ряды
Признаки сходимости и расходимости знакоположительных рядов.
Знакопеременные и знакочередующиеся ряды.
ДВОЙНЫЕ ИНТЕГРАЛЫ
Определение определенного интеграла
- интегральная сумма.
Геометрический смысл ОИ : равен площади криволинейной трапеции.
Аналогично ОИ выводится и двойной интеграл.
Пусть задана функция двух переменных z=f(x,y), которая определена в замкнутой области S плоскости ХОУ.
Интегральной суммой для этой функции называется сумма
Она распространяется на те значения i и к, для которых точки (xi ,yk ) принадлежат области S.
Двойной интеграл от функции z=f(x,y), определенной в замкнутой области S плоскости ХОУ, называется предел соответствующей интегральной суммы.
Правило вычисления двойного интеграла
Двойной интеграл вычисляется через повторные или двукратные интегралы. Различаются два основных вида областей интегрирования.
1. (Рис.1) Область интегрирования S ограничена прямыми х=а, х=в и кривыми
.
Для такой области двойной интеграл вычисляется через повторный по формуле:
Сначала вычисляется внутренний интеграл:
При вычислении внутреннего интеграла ‘у’ считается переменной, а ‘х’-постоянной.
2. (Рис.2) Область интегрирования S ограничена прямыми у=С, у=dи кривыми
.
Для такой области двойной интеграл вычисляется через повторный по формуле:
Сначала вычисляется внутренний интеграл, затем внешний.
При вычислении внутреннего интеграла ‘х’ считается переменной, а ‘у’-постоянной.
3. Если область интегрирования не относится ни к 1 ни ко второму случаю, то разбиваем ее на части таким образом, чтобы каждая из частей относилась к одному из этих двух видов.
Вычисление объемов тел с помощью двойного интеграла
Объем тела, ограниченного сверху поверхностью z=f(x,y), снизу- плоскостью z=0 (плоскость ХОУ) и с боков- цилиндрической поверхностью, вырезающей на плоскости ХОУ область S, вычисляется по формуле:
Вычисление площадей поверхностей фигур с помощью двойного интеграла
Если гладкая поверхность задана уравнением z=f(x,y), то площадь поверхности (Sпов.), имеющей своей проекцией на плоскость ХОУ область S, находится по формуле:
- площадь поверхности.
ТРОЙНЫЕ ИНТЕГРАЛЫ
Определяется аналогично двойному интегралу.
Тройной интеграл от функции U=f(x,y,z), распространенным на область V, называется предел соответствующей трехкратной суммы.
Вычисление тройного интеграла сводится к последовательному вычислению обыкновенных (однократных) нтегралов.
Вычисление объемов тел с помощью тройного интеграла
Объем тела вычисляется по формуле:
НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
Это интегралы: - с бесконечными пределами; - от неограниченной функции.
Первый вид
Несобственные интегралы с бесконечными пределами имеют вид:
;
;
Несобственные интегралы от функции в пределах от (а) до () определяются равенством.
1
.; 2
.
; 3
.
Если этот предел существует и конечен, то несобственный интеграл называется сходящимся ; если предел не существует или равен бесконечности, то несобственный интеграл называется расходящимся (ряд сходится или расходится?). Это и есть ответ.
Второй вид
Несобственные интегралы от неограниченной функции имеют вид: , где существует точка “с” (точка разрыва) такая, что
;
, т.е.
(в частности c=a; c=b).
Если функция f(x) имеет бесконечный разрыв в точке “с” отрезка [a;b] и непрерывна при или
, то полагаем:
Если пределы в правой части последнего равенства существуют и конечны, то несобственный интеграл сходится , если пределы не существуют или равны бесконечности - то расходятся .
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
1 . Дифференциальное уравнение - уравнение , связывающее независимую переменную х, искомую функцию f(x) и ее производные .
Символически дифференциальное уравнение выглядит:
F(x,y,y’,y’’…,y(
n
)
)=0 или .
2 . Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение:
Пример.
F(x,y,y’)=0- дифференциальное уравнение первого порядка.
F(x,y,y’,y’’)=0- дифференциальное уравнение второго порядка.
3
. Решением дифференциального уравнения называется всякая функция , которая при подстановке в уравнение, обращает его в верное тождество.
Для того чтобы решить дифференциальное уравнение надо его проинтегрировать.
Пример .
Дифференциальное уравнение первого порядка.
Общее и частное решения.
F(x,y,y’)=0
Это уравнение можно привести к виду y’=f(x,y).
Интегрируем уравнение.
После вычисления возникает постоянная С. Поэтому решение фактически зависит не только от х, но и от С, т.е. y=f(x,C). Придавая С различные значения, мы получаем множество различных решений дифференциального уравнения. Эти решения (y=f(x,C)) называются общим решением дифференциального уравнения.
Придавая С различные значения получаем различные решения дифференциального уравнения. Так как С имеет бесконечное множество значений, то и решений будет бесконечное множество (которые отличаются друг от друга путем сдвига на несколько единиц).
Геометрически общее решение представляет собой семейство кривых на координатной плоскости ХОУ.
Частное решение .
Пусть в дифференциальном уравнении заданы дополнительные условия, что при х=х0 функция принимает значение у=у0. Это дополнительное условие называется начальным условием
и записывается: а
). у=у0 при х=х0; б
). ; в
). у(х0)=у0.
Геометрически начальное условие означает некоторую точку (х0,у0) на плоскости ХОУ.
Подставляя в начальное условие
, находим вполне определенные значения постоянной С. Тогда
является частным решением
уравнения.
Геометрически частное решение обозначает: начальное условие задает некоторую точку на плоскости и из семейства кривых (общее решение) выбирается та единственная кривая, которая проходит через эту точку.
Теорема существования и единственности решения дифференциального уравнения (теорема Коши ).
Если в дифференциальном уравнении y=f(x,y) функция f(x,y) и ее частная производная определены и непрерывны в некоторой области Д на плоскости ХОУ, то какова бы ни была внутренняя точка (х0,у0) этой области, данное уравнение имеет единственное решение
, удовлетворяющее начальному условию у=у0 при х=х0.
Геометрически смысл заключается в следующем: каждой точке (х0,у0) области Д соответствует только одна интегральная кривая, проходящая через эту точку (каждой точке соответствует только одно частное решение).
Замечание . “Найти частное решение”=“Решить задачу Коши”.
Существует 4 вида дифференциальных уравнений первого порядка.
1. Дифференциальные уравнения первого порядка с разделяющимися переменными.
Дифференциальные уравнения первого порядка в общем виде можно записать либо через производные F(x,y,y’)=0, либо через дифференциалы
.
Дифференциальное уравнение- уравнение с разделяющимися переменными, если его можно представить в виде:
- - через производную.
- - через дифференциал.
В этих уравнениях в произведениях стоят функции, каждая из которых зависит от одной переменной (х или у). Т.е. уравнение будет уравнением с разделяющимися переменными, если его можно преобразовать так, чтобы в одной его части была только одна переменная, а в другой – только другая.
Замечание. При решении дифференциальное уравнение ответу можно придать различную форму в зависимости от того, как записана произвольная постоянная С.
Решение.
-
;
-интегрируем и получаем решение.
-
;
Однородные дифференциальные уравнения первого порядка
Функция f(x,y) называется однородной функцией n–го измерения, если при любом выполняется условие:
.
Дифференциальное уравнение y’=f(x,y) есть однородное, если функция f(x,y) является однородной функцией нулевого измерения.
Дифференциальное уравнение P(x,y)dx+Q(x,y)dy=0 однородное, если P(x,y) и Q(x,y) являются однородными функциями одного и того же измерения.
P(x,y)dx=-Q(x,y)dy;
Однородное уравнение всегда можно привести к виду и с помощью замены
однородное уравнение всегда приводится к уравнению с разделяющимися переменными (
; y=xt; y’=t+xt’).
Линейные дифференциальные уравнения
ЛДУ - уравнения вида y’+P(x)y=Q(x)– первого порядка относительно у и у’.
Для решения ЛДУ применяем замену: y=UV, тогда y’=U’V+UV’
U’V+UV’+P(x)UV=Q(x)
V(U’+P(x)U)+UV’=Q(x)
Далее U’+P(x)U=0, получаем два уровнения с разделяющимися переменными:
1
). U’+P(x)U=0 находим U. 2
). UV’=Q(x) находим V.
. С ставится только при вычислении второго уравнения.
Замечание . Выражение, стоящее в скобках, можно прировнять к нулю, т.к. одну из функций можно взять произвольной, другую – определяем на основании ЛДУ.
Уравнения Бернулли
УБ - дифференциальные уравнения вида y’+P(x)y=Q(x)*yn , где
- т.к. при этих значениях уравнение будет линейным.
УБ решаются так же, как и линейные.
Дифференциальные уравнения второго порядка
Дифференциальные уравнения второго порядка в общем виде записываются: F(x,y,y’,y’’)=0
Как и в случае дифференциальных уравнений первого порядка для решения дифференциальных уравнений второго порядка существуют общее и частное решения. Но, если для дифференциальных уравнений первого порядка решение зависело от одной константы С, то для дифференциальных уравнений второго порядка решение зависит от двух постоянных: - общее решение.
Если заданы начальные условия (у=у0, у=у0 при х=х0), то получаем частное решение, удовлетворяющее этим начальным условиям.
Начальные условия так же могут задаваться в виде:
у=у0 при х=х0; у=у1 при х=х1.
Три случая понижения порядка
1. Случай непосредственного интегрирования
F(x,y”)=0
y’’=f(x)- решение этого уравнения находится путем двукратного интегрирования.
;
;
;
2. Когда дифференциальное уравнение явно не содержит у, т.е. F ( x , y ’, y ”)=0
С помощью замены у’=р; это уравнение приводим к уравнению первого порядка
.
3. Когда дифференциальное уравнение явно не содержит х, т.е. F ( y , y ’, y ”)=0.
С помощью замены y’=p, это уравнение приводим к уравнению первого порядка
.
Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
Линейными однородными дифурами второго порядка с постоянными коэффициентами называются уравнения вида:
y’’+py’+qy=0,
где p и q – некоторые числа.
Составим характеристическое уравнение:
,
которое получается из данного уравнения путем замены в нем производных искомой функции соответствующими степенями “к”. Причем сама функция заменяется единицей.
Если к1 и к2 – корни характериситического уравнения, то общее решение однородного уравнения имеет один из следующих трех видов:
1). , если к1 и к2 – действительные и различные, т.е.
D>0.
2). , если к1 и к2 – действительные и равные, т.е. к1=к2, D=0.
3). , если к1 и к2 – комплексные, т.е.
; D<0.
Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
Имеют вид:
,
где p и q– некоторые числа.
Общее решение имеет вид:, где
y0 - общее решение соответствующего однородного уравнения; - частное решение соответствующего однородного уравнения.
Т.е. для нахождения общего решения неоднородного уравнения ‘у’, сначала находят общее решение соответствующего однородного уравнения у0, а затем частное решение , и складывают их.
Частное решение неоднородного уравнения находится методом неопределенных коэффициентов .
Для нахождения частных решений рассмотрим несколько случаев.
1. Пусть правая часть f(x) имеет вид:
, где Pn
(x) – многочлен n–ой степени.
Тогда возможны следующие 3 случая:
А)
.
Если ‘а’ не является корнем
характеристического уравнения k2
+pk+q=0, то частное решение имеет вид:
, где Qn
(x) – многочлен той же степени, что и Pn
(x), только с неопределенными коэффициентами.
Например .
Pn (x)=8 - многочлен 0-ой степени (n=0). Qn (x)=A;
Pn (x)=2x-3 - многочлен 1-ой степени (n=1). Qn (x)=Ax+B;
Pn (x)=x2 - многочлен 2-ой степени (n=2). Qn (x)=Ax2 +Bx+C;
Pn (x)=3x3 -3x - многочлен 3-ей степени (n=3). Qn (x)=Ax3 +Bx2 +Cx+D.
Замечание . Многочлен Qn (x) всегда должен быть полный, т.е. содержать все степени х. Коэффициенты А,В,С,Д и т.д. находим по методу неопределенных коэффициентов непосредственно при решении каждого конкретного уравнения.
Б).
Если а является однократным корнем
характеристического уравнения k2
+pk+q=0, то есть совпадает с одним из корней характеристического уравнения, то частное решение имеет вид:
.
В).
Если а является двукратным корнем
характеристического уравнения k2
+pk+q=0, то есть совпадает с двумя корнями характеристического уравнения, то частное решение имеет вид:
.
Итог .
Если , то
, где r– кратность корня ‘а’ в характеристическом уравнении, т.е. r=0, если ‘а’ не есть корень; r=1, если ‘а’ совпадает с одним из корней; r=2, если ‘а’ совпадает с двумя корнями.
2.
Если правая часть f(x) имеет вид:,
где Pn
(
x
)
–многочлен n–ой степени; Qm
(
x
)
-многочлен m–ой степени.
Тогда возможны следующие два случая:
А).
Если не является корнем
характеристического уравнения k2
+pk+q=0 (
), то частное решение
имеет вид:
, где SN
(x), TN
(x)–многочлены степени N с неопределенными коэффициентами, где N=max из n и m (N=max{n,m}), т.е. степень N многочленов SN
(x) и TN
(x) равна наибольшей из степеней многочленов Pn
(x) и Qm
(x).
Б).
Если является корнем
характеристического уравнения k2
+pk+q=0 (
), то частное решение
имеет вид:
Замечание .
- Если в правой части f(x) неоднородного уравнения во 2
случае отсутствует одно из слагаемых, т.е. Pn
(x)=0 или Qm
(x)=0, то частное решение все равно записывается в полоном виде.
- Если правая часть f(x) неоднородного уравнения в 1
и 2
случаях есть сумма нескольких функций (f(x)= f1
(x)+ f2
(x)+… fn
(x)), то .
- Так же рассматриваем все комбинации при расчете : cosx, sinx, xcosx, xsinx,x2
cosx, x2
sinx.
КОМПЛЕКСНЫЕ ЧИСЛА
Комплексным числом (z) называется выражение z=x+iy, где х и у- действительные числа, i-мнимая единица.
i определяется: i2
=-1 , отсюда .
х- действительная часть (x=Rez);
у- мнимая часть (y=Imz).
Геометрическое изображение комплексных чисел
Существуют следующие формы комплексных чисел: алгебраическая
(x+iy), тригонометрическая
(r(cos+isin
)), показательная
(rei
).
Всякое комплексное число z=x+iy можно изобразить на плоскости ХОУ в виде точки А(х,у).
Плоскость, на которой изображаются комплексные числа, называется плоскостью комплексного переменного z (на плоскости ставим символ z).
Ось ОХ – действительная ось, т.е. на ней лежат действительные числа. ОУ – мнимая ось с мнимыми числами.
x + iy - алгебраическая форма записи комплексного числа.
Выведем тригонометрическую форму записи комплексного числа.
;
Подставляем полученные значения в начальную форму:
, т.е.
r
(
cos
+
isin
)
- тригонометрическая форма записи комплексного числа.
Показательная форма записи комплексного числа следует из формулы Эйлера:
, тогда
z=rei
- показательная форма записи комплексного числа.
Действия над комплексными числами
1. сложение. z1 +z2 =(x1+iy1)+ (x2+iy2)=(x1+x2)+i(y1+y2);
2 . вычитание. z1 -z2 =(x1+iy1)- (x2+iy2)=(x1-x2)+i(y1-y2);
3. умножение. z1 z2 =(x1+iy1)*(x2+iy2)=x1x2+i(x1y2+x2y1+iy1y2)=(x1x2-y1y2 )+i(x1y2+x2y1);
4
. деление. z1
/z2
=(x1+iy1)/(x2+iy2)=[(x1+iy1)*(x2-iy2)]/[ (x2+iy2)*(x2-iy2)]=
Два комплексных числа, которые отличаются только знаком мнимой единицы, т.е. z=x+iy (z=x-iy), называются сопряженными.
Произведение
- Если комплексные числа заданы в тригонометрической форме.
z1=r(cos+isin
); z2=r(cos
+isin
).
То произведение z1*z2 комплексных чисел находится: , т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.
- Если комплексные числа заданы в показательной форме.
;
;
Частное
- Если комплексные числа заданы в тригонометрической форме.
- Если комплексные числа заданы в показательной форме.
Возведение в степень
1. Комплексное число задано в алгебраической форме.
z=x+iy, то zn находим по формуле бинома Ньютона :
zn =(x+iy)n .
- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).
; n!=1*2*…*n; 0!=1;
.
Применяем для комплексного числа.
В полученном выражении нужно заменить степени i их значениями:
i0 =1 Отсюда, в общем случае получаем: i4 k =1
i1 =i i4k+1 =i
i2 =-1 i4k+2 =-1
i3 =-i i4k+3 =-i
i4 =1
i5 =i
i6 =-1
Пример .
i31 = i28 i3 =-i
i1063 = i1062 i=i
2. Если комплексное число задано в тригонометрической форме.
z=r(cos+isin
), то
- формула Муавра
.
Здесь nможет быть как “+” так и “-” (целым).
3. Если комплексное число задано в показательной форме:
Извлечение корня
Рассмотрим уравнение: .
Его решением будет корень n–ой степени из комплексного числа z: .
Корень n–ой степени из комплексного числа z имеет ровно n решений (значений). Корень из действующего числа n-ой степени имеет только одно решение. В комплексных – n решений.
Если комплексное число задано в тригонометрической форме:
z=r(cos+isin
), то корень n-ой степени от z находится по формуле:
, где к=0,1…n-1.
РЯДЫ
Числовые ряды
Пусть переменная а принимает последовательно значения а1 ,а2 ,а3 ,…,аn . Такое перенумерованное множество чисел называется последовательностью. Она бесконечна.
Числовым рядом называется выражение а1
+а2
+а3
+…+аn
+…= . Числа а1
,а2
,а3
,…,аn
– члены ряда.
Например.
а1 – первый член ряда.
аn – n-ый или общий член ряда.
Ряд считается заданным, если известен n-ый (общий член ряда).
Числовой ряд имеет бесконечное число членов.
Числители – арифметическая прогрессия (1,3,5,7…).
n-ый член находится по формуле
аn =а1 +d(n-1); d=аn -аn-1 .
Знаменатель – геометрическая прогрессия .
bn
=b1
qn
-1
; .
Рассмотрим сумму первых n членов ряда и обозначим ее Sn.
Sn=а1+а2+…+аn .
Sn – n-ая частичная сумма ряда.
Рассмотрим предел:
S - сумма ряда.
Ряда сходящийся , если этот предел конечен (конечный предел S существует).
Ряд расходящийся , если этот предел бесконечен.
В дальнейшем наша задача заключается в следующем: установить какой ряд.
Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.
, C=const.
Геометрическая прогрессия является сходящимся
рядом
, если , и расходящимся, если
.
Также встречается гармонический ряд
(ряд ). Этот ряд расходящийся
.
Свойства числовых рядов
1.
Если сходится а1
+а2
+а3
+…+аn
+…=, то сходится и ряд аm
+1
+аm+2
+аm+3
+…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.
2 . Если ряд а1 +а2 +а3 +… сходится и его сумма равна S, то ряд Са1 +Са2 +…, где С= так же сходится и его сумма равна СS.
3. Если ряды а1 +а2 +… и b1 +b2 +… сходятся и их суммы равны соответственно S1 и S2, то ряды (а1 +b1 )+(а2 +b2 )+(а3 +b3 )+… и (а1 -b1 )+(а2 -b2 )+(а3 -b3 )+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.
4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).
- необходимый
признак (условие) сходимости
ряда
.
б). Если то ряд расходящийся – достаточное
условие расходимости
ряда
.
-ряды такого вида исследуются только по 4 свойству. Это расходящиеся
ряды.
Знакоположительные ряды
Признаки сходимости и расходимости знакоположительных рядов.
Знакоположительные ряды это ряды, все члены которых положительные. Эти признаки сходимости и расходимости мы будем рассматривать для знакоположительных рядов.
1. Первый признак сравнения.
Пусть даны два знакоположительных ряда а1
+а2
+а3
+…+аn
+…=(1) и b1
+b2
+b3
+…+bn
+…=
(2).
Если члены ряда (1) не больше
соответствующих членов ряда (2), т.е. аn
bn
и ряд (2) сходится
, то и ряд (1) также сходится.
Если члены ряда (1) не меньше
соответствующих членов ряда (2), т.е. аn
bn
и ряд (2) расходится
, то и ряд (1) также расходится.
Этот признак сравнения справедлив, если неравенство выполняется не для всех n, а лишь начиная с некоторого.
2. Второй признак сравнения
Если существует конечный и отличный от нуля предел , то оба ряда сходятся или расходятся одновременно.
-ряды такого вида расходятся
по второму признаку сравнения. Их надо сравнивать с гармоническим рядом.
3. Признак Даламбера
Если для знакоположительного ряда (а1
+а2
+а3
+…+аn
+…=) существует
(1), то ряд сходится, если q<1, расходится, если q>1. Если q=1 то вопрос остается открытым.
4. Признак Коши радикальный
Если для знакоположительного ряда существует предел (2), то ряд сходится, если q<1, расходится, если q>1. Если q=1 то вопрос остается открытым.
5. Признак Коши интегральный
Вспомним несобственные интегралы.
Если существует предел . Это есть несобственный интеграл и обозначается
.
Если этот предел конечен, то говорят, что несобственный интеграл сходится. Ряд, соответственно, сходится или расходится.
Пусть ряд а1
+а2
+а3
+…+аn
+…=- знакоположительный ряд.
Обозначим an =f(x) и рассмотрим функцию f(x). Если f(x)- функция положительная, монотонно убывающая и непрерывная, то, если несобственный интеграл сходится, то и данный ряд сходится. И наоборот: если несобственный интеграл расходится, то и ряд расходится.
Если ряд конечен, то он сходится.
Очень часто встречаются ряды - ряд Дерихле
. Он сходится, если p>1, расходится p<1. Гармонический ряд является рядом Дерихле при р=1. Сходимость и расходимость данного ряда легко доказать с помощью интегрального признака Коши.
Знакопеременные и знакочередующиеся ряды
Знакопеременный ряд – это ряд, среди членов которого имеются как + так и – члены.
Частным случаем знакопеременного ряда является знакочередующийся ряд. Это ряд, у которого за каждым + членом следует -, и наоборот, т.е. знаки чередуются.
Пусть задан знакопеременный ряд а1
+а2
+а3
+…+аn
+…= (1) (члены как + так и -).
Возьмем ряд (3), составленный из абсолютных величин членов ряда (1). Ряд (3) является знакоположительным рядом.
Если ряд (3) сходится, то ряд (1) также сходится и называется абсолютно сходящимся (ответ получен сразу).
Если ряд (3) расходится, а:
- ряд (1) сходится, то ряд (1) называется условно сходящимся;
- ряд (1) расходится, то ряд (1) называется расходящимся.
При исследовании знакоположительных рядов можем получить 2 ответа: ряд сходится или ряд расходится.
При исследовании знакопеременных рядов могут получиться 3 ответа: ряд сходится абсолютно, ряд сходится условно, ряд расходится.
Схема
Если (3) – сходится (1) - сходится абсолютно.
Если (3) – расходится
При исследовании на сходимость знакопеременного ряда (1) начинать надо с разбора знакоположительного ряда (3). Т.к. ряд (3)- знакоположительный ряд, то к нему можно применить все признаки сходимости для знакоположительных рядов.
Из расходимости ряда (3) не следует расходимость ряда (1), но если (3) расходится по признакам Даламбера или Коши радикальный , то расходится не только ряд (3), но и ряд (1) .
Если ряд – знакочередующийся, то для него дается еще один признак сходимости :
Признак Лейбница
Если для знакочередующегося ряда b1-b2+b3-b4+…(bn0) выполняются условия:
1
. b1b2
b3
b4…;
2
. , - то данный ряд сходится условно
.
Похожие работы
-
Формулы по математическому анализу
Формулы дифференцирования Таблица основных интегралов Правила интегрирования Основные правила дифференцирования Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие
-
Дискретная теория поля
Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.
-
Тройные и кратные интегралы
Вычисление тройных и кратных интегралов в различных системах координат. Применение тройных интегралов.
-
Приближенный метод решения интегралов. Метод прямоугольников (правых, средних, левых)
Лабораторная работа № 4. Приближенный метод решения интегралов. Метод прямоугольников (правых, средних, левых). Гребенникова Марина 12-А класс Многие инженерные задачи, задачи физики, геометрии и многих других областей человеческой деятельности приводят к необходимости вычислять определенный интеграл вида
-
Приближенное вычисление определенных интегралов
Магнитогорский Государственный технический университет Приближенное вычисление определенных интегралов. Формула парабол (формула симпсона) Подготовил: Студент группы ФГК-98 Григоренко М.В.
-
Билеты по математическому анализу
Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № Сформулируйте понятие полного дифференциала функции двух переменных и объясните его геометрический смысл.
-
Вычисление определенного интеграла методом трапеций и средних прямоугольников
БЕЛОРУССКИЙ АГРАРНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ КУРСОВАЯ РАБОТА на тему “вычисление определенного интеграла методами трапеций и средних прямоугольников”
-
Вычисление двойных интегралов методом ячеек
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Чувашский государственный университет им. И. Н. Ульянова КУРСОВАЯ РАБОТА по вычислительной математике.
-
Контрольные билеты по алгебре
Алгебра и начала анализа. 11 класс. Билет №1. Функция y = sin x, ее свойства и график. Показательная функция, ее свойства для случая, когда основание больше единицы (доказательство одного из свойств по желанию ученика).
-
Техника интегрирования и приложения определенного интеграла
Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.