Referat.me

Название: Доказательство великой теоремы Ферма для четных показателей степени

Вид работы: доклад

Рубрика: Математика

Размер файла: 35.4 Kb

Скачать файл: referat.me-215776.docx

Краткое описание работы: Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.

Доказательство великой теоремы Ферма для четных показателей степени

Файл : FERMA-2mPF-for

© Н . М . Козий , 2007

Авторские права защищены свидетельствами Украины

№ 27312 и № 28607

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ

Великая теорема Ферма формулируется следующим образом: диофантово уравнение(http://soluvel.okis.ru/evrika.html):

А n + В n = С n /1/

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:

А n = С n n /2/

Пусть показатель степени n =2 m . Тогда уравнение /2/ запишется следующим образом:

А2 m = С2 m –В2 m /3/

Для доказательства великой теоремы Ферма используем алгебраическое доказательство теоремы Пифагора.

АЛГЕБРАИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА (Решение уравнения теоремы Пифагора в целых числах)

Теорема Пифагора формулируется следующим образом: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

С22 + В2 , /4/

где: С – гипотенуза; А и В – катеты.

Существуют прямоугольные треугольники, у которых стороны А , В и С выражаются целыми числами. Такие числа называются пифагоровыми.

Рассматривая уравнение теоремы Пифагора как алгебраическое уравнение, докажем, что существует бесконечное количество прямоугольных треугольников, в которых их стороны выражаются целыми числами или, что одно и тоже, уравнение /4/ имеет бесконечное количество решений в целых числах.

Суть теоремы Пифагора не изменится, если уравнение /4/ запишем следующим образом:

А2 = С2 –В2 /5/

Для доказательства теоремы Пифагора методами элементарной алгебры используем два известные в математике метода решения алгебраических уравнений: метод решения параметрических уравнений и метод замены переменных.

Уравнение /5/ рассматриваем как параметрическое уравнение с параметром A и переменными B и С . Уравнение /5/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:

А2 =( C - B )∙( C + B ) /6/

Используя метод замены переменных, обозначим:

C - B = M /7/

Из уравнения /7/ имеем:

C = B + M /8/

Из уравнений /6/, /7/ и /8/ имеем:

А2 = M ∙ ( B + M + B )= M ∙(2 B + M ) = 2 BM + M 2 /9/

Из уравнения /9/ имеем:

А2 - M 2 =2 BM /10/

Отсюда: B = /11/

Из уравнений /8/ и /11/ имеем:

C= /12/

Таким образом: B = / 13/

C /14/

Из уравнений /11/ и /12/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A 2 на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A 2 .

Числа А и M должны иметь одинаковую четность .

По формулам /13/ и /14/ определяются числа B иC как переменные, зависящие от значения числа А как параметра и значения числа M .

Из изложенного следует: 1. Квадрат простого числа A равен разности квадратов одной пары чисел B иC ( приM =1). 2. Квадрат составного числа A равен разности квадратов одной пары или нескольких пар чисел B иC . 3. Квадрат числа Am равен разности квадратов нескольких пар чисел. 4. Все числа A > 2 являются пифагоровыми.

Таким образом, существует бесконечное количество троек пифагоровых чисел А , В и С и, следовательно, бесконечное количество прямоугольных треугольников, у которых стороны А , В и С выражаются целыми числами.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Вариант 1

Уравнение /3/ с учетом уравнений /5/ и /6/ запишем следующим образом:

А2 m = С2 m –В2 m =(С m –В m )∙(С m m ) /15/

Тогда в соответствии с уравнениями /13/ и /14/ запишем:

Bm = /16/

Cm /17/

Из уравнений /16/ и /17/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A 2 m на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A 2 m .Следовательно, число A 2 m должно быть равно:

A 2 m = M · D , /18/

где D – целое число.

Тогда : Bm = /19/

А число Cm с учетом уравнения /8/ равно:

Cm = Bm + M = /20/

Тогда из уравнений /19/ и /20/ следует:

B = /21/

C /22/

Если допустить, что В – целое число, то из уравнения /22/ следует, что число С не может быть целым числом, так как сомножители в скобках в подкоренных выражениях в уравнениях /21/ и /22/ отличаются всего на 1.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Вариант 2

Выше в доказательстве теоремы Пифагора доказано, что все натуральные числа являются пифагоровыми. Следовательно, все натуральные числа распределяются на тройки пифагоровых чисел и, следовательно, все тройки пифагоровых чисел удовлетворяют уравнению /4/:

С22 + В2 /23/

Пифагоровы числа (А, В, С) могут быть истолкованы как длины сторон прямоугольного треугольника, а их квадраты могут быть истолкованы как площади квадратов, построенных на гипотенузе и катетах этого треугольника. Умножив приведенное уравнение на С, получим:

С32 ∙ С+ В2 · С /24/

Из уравнения /24/ следует, что объем куба раскладывается на два объема двух параллелепипедов. Поскольку очевидно, что в уравнении /23/ А< C и В< C , то из уравнения/24/ следует:

С33 + В3 /25/

На всем множестве троек пифагоровых чисел ( а все натуральные числа образуют тройки пифагоровых чисел) при показателе степени n =3 не может быть ни одного решения уравнения /1/:

А n + В n = С n

Следовательно, на всем множестве натуральных чисел невозможно куб разложить на два куба.

Умножив уравнение /23/ на С2 , получим:

С2 ∙С22 ·С2 + В2 ∙С2 /26/

Все члены этого уравнения представляют собой объемы параллелепипедов:

параллелепипед С2 ∙С2 имеет в основании квадрат со стороной С и высоту С2 ;

параллелепипед А2 ∙С2 имеет в основании квадрат со стороной А и высоту С2 ;

параллелепипед В2 ∙С2 имеет в основании квадрат со стороной В и высоту С2 .

Следовательно, в соответствии с уравнением /26/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов.

Поскольку, как показано выше, А< C и В< C , то из уравнения/26/ следует:

С44 + В4 /27/

В общем случае уравнение /26/ можно записать следующим образом:

С2 ∙С n -2 2 ·С n -2 + В2 ∙С n -2 /28/

С n 2 ·С n -2 + В2 ∙С n -2 /29/

Следовательно, в соответствии с уравнениями /28/ и /29/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов. Поскольку, как показано выше, А< C и В< C , то из уравнения/29/ следует:

С n n + В n /30/

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при четных показателях степени.

Похожие работы

  • Доказательство Великой теоремы Ферма с помощью Малой теоремы

    Файл: FERMA-PR-ABCfor © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 28607 ДОКАЗАТЕЛЬСТВО BЕЛИКОЙ ТЕОРЕМЫ ФЕРМА C ПОМОЩЬЮ МАЛОЙ ТЕОРЕМЫ ФЕРМА

  • Доказательство великой теоремы Ферма 5

    Файл: FERMA-forum © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 29316 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА Оригинальный метод

  • Простое доказательство великой теоремы Ферма

    Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

  • Общее доказательство гипотезы Биля, великой теоремы Ферма и теоремы Пифагора

    Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

  • Алгебраическое доказательство теоремы Пифагора

    Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.

  • Доказательство Великой теоремы Ферма для степени n 3

    Файл: FERMA-n3-algo © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма для показателя степени n=3 формулируется следующим образом: диофантово уравнение:

  • Доказательство великой теоремы Ферма

    Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.

  • Доказательство великой теоремы Ферма

    Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

  • Доказательство теоремы Ферма для n=4

    Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

  • Краткое доказательство великой теоремы Ферма

    Теорема Ферма, ее формулировка и доказательство в случаях, если показатель степени n - нечетное число и если n - четное число. Теорема о единственности факторизации. Дополнительные обоснования теоремы. Состав наибольшего составного числового множителя.