Название: Методы решения уравнений линейной регрессии
Вид работы: контрольная работа
Рубрика: Математика
Размер файла: 549.63 Kb
Скачать файл: referat.me-218944.docx
Краткое описание работы: ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
Методы решения уравнений линейной регрессии
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
ФИЛИАЛ В Г. ЛИПЕЦКЕ
Контрольная работа
по эконометрике
Липецк, 2009 г.
Задача
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (Х, млн.руб.)
| Y | 31 | 23 | 38 | 47 | 46 | 49 | 20 | 32 | 46 | 24 |
| Х | 38 | 26 | 40 | 45 | 51 | 49 | 34 | 35 | 42 | 24 |
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков
; построить график остатков.
3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве.
6. Осуществить прогнозирование среднего значения показателя Yпри уровне значимости α=0,01 при Х=80% от его максимального значения.
7. Представить графически фактических и модельных значений Y, точки прогноза.
8. Составить уравнения нелинейной регрессии:
· Гиперболической;
· Степенной;
· Показательной.
Привести графики построенных уравнений регрессии.
9. Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
Решение
1. Уравнение линейной регрессии имеет вид:
= а0
+ а1
x.
Построим линейную модель.
Для удобства выполнения расчетов предварительно упорядочим всю таблицу исходных данных по возрастанию факторной переменной Х (Данные => Сортировка). ( рис. 1).

Рис.1
Используем программу РЕГРЕССИЯ и найдем коэффициенты модели (рис.2)

Рис.2
Коэффициенты модели содержатся в таблице 3 (столбец Коэффициенты).
Таким образом, модель построена и ее уравнение имеет вид
Yт = 12,70755+0,721698Х.
Коэффициент регрессии b=0,721698, следовательно, при увеличении объема капиталовложений (Х) на 1 млн руб. объем выпуска продукции (Y) увеличивается в среднем на 0,721698 млн руб.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков SІe ; построить график остатков.
Остатки содержатся в столбце Остатки итогов программы РЕГРЕССИЯ (таблица 4).
Программой РЕГРЕССИЯ найдены также остаточная сумма квадратов SSост=148,217 и дисперсия остатков MS=18,52712 (таблица 2).
Для построения графика остатков нужно выполнить следующие действия:
· Вызвать Матер Диаграмм, выбрать тип диаграммы Точечная (с соединенными точками).
· Для указания данных для построения диаграммы зайти во вкладку Ряд, нажать кнопку Добавить; в качестве значений Х указать исходные данные Х (таблица 1);значения Y - остатки (таблица 4).

Рис.3 График остатков
3. Проверить выполнение предпосылок МНК.
Предпосылками построения классической линейной регрессионной модели являются четыре условия, известные как условия Гаусса-Маркова.
· В уравнении линейной модели Y=a+b*X+ε слагаемое ε - случайная величина, которая выражает случайный характер результирующей переменной Y.
· Математическое ожидание случайного члена в любом наблюдении равно нулю, а дисперсия постоянна.
· Случайные члены для любых двух разных наблюдений независимы (некоррелированы).
· Распределение случайного члена является нормальными.
1) Проведем проверку случайности остаточной компоненты по критерию повторных точек.
Количество повторных точек определим по графику остатков: p=5
Вычислим критическое значение по формуле:
.
При
найдем ![]()
Схема критерия:

Сравним
, следовательно, свойство случайности для ряда остатков выполняется.
1. Равенство нулю математического ожидания остаточной компоненты для линейной модели, коэффициенты которой определены по МНК, выполняется автоматически. С помощью функции СРЗНАЧ для ряда остатков можно проверить:
.
Свойство постоянства дисперсии остаточной компоненты проверим по критерию Гольдфельда–Квандта.
В упорядоченных по возрастанию переменной X исходных данных (
) выделим первые 4 и последние 4 уровня, средние 2 уровня не рассматриваем.
С помощью программы РЕГРЕССИЯ построим модель по первым четырем наблюдениям (регрессия-1), для этой модели остаточная сумма квадратов
.
| Дисперсионный анализ | |||||
| df | SS | MS | F | Значимость F | |
| Регрессия | 1 | 107,7894737 | 107,7894737 | 15,67347 | 0,15751 |
| Остаток | 1 | 6,877192982 | 6,877192982 | ||
| Итого | 2 | 114,6666667 |
С помощью программы РЕГРЕССИЯ построим модель по последним четырем наблюдениям (регрессия-2), для этой модели остаточная сумма квадратов
.
| Дисперсионный анализ | |||||
| df | SS | MS | F | Значимость F | |
| Регрессия | 1 | 4,166666667 | 4,166666667 | 0,186916 | 0,707647 |
| Остаток | 2 | 44,58333333 | 22,29166667 | ||
| Итого | 3 | 48,75 |
Рассчитаем статистику критерия:
.
Критическое значение при уровне значимости
и числах степеней свободы
составляет
.
Схема критерия:
![]()
Сравним
, следовательно, свойство постоянства дисперсии остатков выполняется, модель гомоскедастичная.
2. Для проверки независимости уровней ряда остатков используем критерий Дарбина–Уотсона
.
Предварительно по столбцу остатков с помощью функции СУММКВРАЗН определим
; используем найденную программой РЕГРЕССИЯ сумму квадратов остаточной компоненты
.
Таким образом,
![]()
Схема критерия:

Полученное значение d=2,375, что свидетельствует об отрицательной корреляции. Перейдем к d’=4-d=1,62 и сравним ее с двумя критическими уровнями d1=0,88 и d2=1,32.
D’=1,62 лежит в интервале от d2=1,32 до 2, следовательно, свойство независимости остаточной компоненты выполняются.

С помощью функции СУММПРОИЗВ найдем для остатков
, следовательно r(1)=2,4869Е-14/148,217=1,67788Е-16.
Критическое значение для коэффициента автокорреляции определяется как отношение
Ön и составляет для данной задачи ![]()
Сравнения показывает, что çr(1)= 1,67788Е-16<0,62, следовательно, ряд остатков некоррелирован.
4) Соответствие ряда остатков нормальному закону распределения проверим с помощью
критерия:
.
С помощью функций МАКС и МИН для ряда остатков определим
,
. Стандартная ошибка модели найдена программой РЕГРЕССИЯ и составляет
. Тогда:
![]()
Критический интервал определяется по таблице критических границ отношения
и при
составляет (2,67; 3,57).
Схема критерия:
![]()
2,995
(2,67; 3,57), значит, для построенной модели свойство нормального распределения остаточной компоненты выполняется.
Проведенная проверка предпосылок регрессионного анализа показала, что для модели выполняются все условия Гаусса–Маркова.
4.
Осуществить проверку значимости параметров уравнения регрессии с помощью t–критерия Стьюдента (
).
t–статистика для коэффициентов уравнения приведены в таблице 4.
Для свободного коэффициента
определена статистика
.
Для коэффициента регрессии
определена статистика
.
Критическое значение
найдено для уравнения значимости
и числа степеней свободы
с помощью функции СТЬЮДРАСПОБР.
Схема критерия:
![]()
Сравнение показывает:
, следовательно, свободный коэффициент a является значимым.
, значит, коэффициент регрессии b является значимым.
5.
Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F–критерия Фишера (
), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Коэффициент детерминации R–квадрат определен программой РЕГРЕССИЯ и составляет
.
Таким образом, вариация объема выпуска продукции Y на 79,5% объясняется по полученному уравнению вариацией объема капиталовложений X.
Проверим значимость полученного уравнения с помощью F–критерия Фишера.
F–статистика определена программой РЕГРЕССИЯ (таблица 2) и составляет
.
Критическое значение
найдено для уровня значимости
и чисел степеней свободы
,
.
Схема критерия:
Сравнение показывает:
; следовательно, уравнение модели является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенной в модель факторной переменной Х.
Для вычисления средней относительной ошибки аппроксимации рассчитаем дополнительный столбец относительных погрешностей, которые вычислим по формуле

с помощью функции ABS (таблица 5).
ВЫВОД ОСТАТКА |
|||
| Наблюдение | Предсказанное Y | Остатки | Отн. Погр-ти |
| 1 | 27,14150943 | 6,858490566 | 20,17% |
| 2 | 29,30660377 | -3,306603774 | 12,72% |
| 3 | 30,02830189 | -6,028301887 | 25,12% |
| 4 | 35,08018868 | 2,919811321 | 7,68% |
| 5 | 35,80188679 | -0,801886792 | 2,29% |
| 6 | 40,13207547 | -0,132075472 | 0,33% |
| 7 | 45,90566038 | -3,905660377 | 9,30% |
| 8 | 45,90566038 | 5,094339623 | 9,99% |
| 9 | 46,62735849 | -1,627358491 | 3,62% |
| 10 | 48,07075472 | 0,929245283 | 1,90% |
По столбцу относительных погрешностей найдем среднее значение
(функция СРЗНАЧ).
Схема проверки:
![]()
Сравним: 9,31% < 15%, следовательно, модель является точной.
Вывод: на основании проверки предпосылок МНК, критериев Стьюдента и Фишера и величины коэффициента детерминации модель можно считать полностью адекватной. Дальнейшее использование такой модели для прогнозирования в реальных условиях целесообразно.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости
, если прогнозное значение фактора X составит 80% от его максимального значения.
Согласно условию задачи прогнозное значение факторной переменной Х составит 80% от 49, следовательно,
. Рассчитаем по уравнению модели прогнозное значение показателя У:
.
Таким образом, если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции составит около 48 млн. руб.
Зададим доверительную вероятность
и построим доверительный прогнозный интервал для среднего значения Y.
Для этого нужно рассчитать стандартную ошибку прогнозирования:

Предварительно подготовим:
- стандартную ошибку модели
(Таблица 2);
- по столбцу исходных данных Х найдем среднее значение
(функция СРЗНАЧ) и определим
(функция КВАДРОТКЛ).
Следовательно, стандартная ошибка прогнозирования для среднего значения составляет:

При
размах доверительного интервала для среднего значения
![]()
Границами прогнозного интервала будут
![]()
![]()
Таким образом, с надежностью 90% можно утверждать, что если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции будет от 45,3 млн. руб. до 50,67 млн. руб.
7. Представить графически фактические и модальные значения Y точки прогноза.
Для построения чертежа используем Мастер диаграмм (точечная) – покажем исходные данные (поле корреляции).
Затем с помощью опции Добавить линию тренда… построим линию модели:
тип → линейная; параметры → показывать уравнение на диаграмме.
Покажем на графике результаты прогнозирования. Для этого в опции Исходные данные добавим ряды:
Имя → прогноз; значения
; значения
;
Имя → нижняя граница; значения
; значения
;
Имя → верхняя граница; значения
; значения ![]()

8. Составить уравнения нелинейной регрессии: гиперболической; степенной; показательной.
8.1 Гиперболическая модель
Уравнение гиперболической функции:
= a + b/x.
Произведем линеаризацию модели путем замены X = 1/x. В результате получим линейное уравнение
= a + bX.
Рассчитаем параметры уравнения по данным таблицы 2.
b =
=![]()
а =
=38,4+704,48*0,03=60,25.
Получим следующее уравнение гиперболической модели:
= 60,25-704,48/х.
8.2 Степенная модель
Уравнение степенной модели имеет вид:
=аxb
Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:
lg
= lga + blgx.
Обозначим через
Y=lg
, X=lgx, A=lga.
Тогда уравнение примет вид: Y = A + bX – линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы 3.
b =
=![]()
A =
= 1,57-0,64*1,53=0,59
Уравнение регрессии будет иметь вид: Y = 0,59+0,64* Х.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения.
= 100,59
* х0,64
.
Получим уравнение степенной модели регрессии:
= 3,87* х0,64
.
8.3 Показательная модель
Уравнение показательной кривой:
=abx
.
Для построения этой модели необходимо произвести линеаризацию переменных. Для этого осуществим логарифмирование обеих частей уравнения:
lg
= lga + xlgb.
Обозначим: Y = lg
, B = lgb, A = lga. Получим линейное уравнение регрессии: Y = A + Bx. Рассчитаем его параметры, используя данные таблицы 4.
В =
=![]()
А =
= 1,57-0,01*35,6=1,27
Уравнение будет иметь вид: Y = 1,27+0,01х.
Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения:
=101,27
* ( 100,01
)х
= 18,55*1,02х
.
Графики построенных моделей:

Рис.3. Гиперболическая

Рис.4. Степенная

Рис.5. Показательная
9. Сравнение моделей по характеристикам: коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Вывод.
9.1 Гиперболическая модель
Коэффициент детерминации:
=![]()
Вариация результата Y на 70,9% объясняется вариацией фактора Х.
Коэффициент эластичности:
=
= 0,05.
Это означает, что при увеличении фактора Х на 1 % результирующий показатель изменится на 0,05 %.
Бета-коэффициент:
Sx
=
=0,01 Sy
=
=8,5
60,25*0,01/8,5=0,07.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 0,07 среднеквадратического отклонения этого показателя.
Средняя относительная ошибка аппроксимации:
отн
= 109,7/ 10= 10,97 %.
В среднем расчетные значения
для гиперболической модели отличаются от фактических значений на 10,97%.
9.2 Степенная модель
Коэффициент детерминации:
=![]()
Вариация результата Y на 73,6% объясняется вариацией фактора Х. Коэффициент эластичности:
=
= 0,57.
Это означает, что при увеличении факторного признака на 1 % результирующий показатель увеличится на 0,57%.
Бета-коэффициент:
, Sy
=
и Sx
=
.
Sx
=
=0,14 Sy
=
=0,10
0,59*0,14/0,1=0,78.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 0,78 среднеквадратического отклонения этого показателя.
отн
=
= 93,77/10 = 9,34%.
В среднем расчетные значения
для степенной модели отличаются от фактических значений на 9,34%.
9.3 Показательная модель
Коэффициент детерминации:
=![]()
Вариация результата Y на 75,7% объясняется вариацией фактора Х. Коэффициент эластичности:
![]()
= 28,71.
Это означает, что при росте фактора Х на 1 % результирующий показатель Y изменится на 28,71 %.
Бета-коэффициент:
Sx
=
=10,5 Sy
=
=0,10
1,27*10,5/0,10=129,10.
Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 129,1 среднеквадратического отклонения этого показателя.
отн
= 91,9/ 10 = 9,19%.
В среднем расчетные значения
для показательной модели отличаются от фактических значений на 9,19%.
Вывод
Лучшей из уравнений нелинейной регрессии является показательная: выше коэффициент детерминации, наименьшая относительная ошибка. Модель можно использовать для прогнозирования.
Похожие работы
-
Решение задачи линейного программирования симплексным методом
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение Высшего профессионального образования «Волгоградский государственный технический университет»
-
Коллинеарность и компланарность векторов. Канонические уравнения прямой
Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.
-
Решение систем линейных уравнений
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ
-
Применение регрессионного анализа при оценке рисков
ГОУ ВПО ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ КАФЕДРА ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ И МОДЕЛЕЙ Отчет по лабораторной работе
-
Практическая работа по Экономико- математическому методу и прикладные модели
Федеральное агентство по образованию Всероссийский заочный финансово-экономический институт Омский филиал Кафедра математики и информатики ПРАКТИЧЕСКОЕ ЗАДАНИЕ № 2 ПО ДИСЦИПЛИНЕ: «ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МЕТОДЫ И ПРИКЛАДНЫЕ МОДЕЛИ»
-
Анализ накладных расходов
Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования
-
по Экономико-математическому моделированию
На основе данных выданных преподавателем необходимо: 1. Определить параметры следующих уравнений регрессии: а) линейного; б) гиперболического; в) степенного;
-
Зависимость цены от качества
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ КАФЕДРА МАТЕМАТИКИ И ИНФОРМАТИКИ ЛАБОРАТОРНАЯ РАБОТА по эконометрике Вариант № 1 Омск, 2010 г.
-
Определение зависимости цены товара
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ
-
Эконометрика 9
едеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования ЧЕЛЯБИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ