Referat.me

Название: Основы высшей матиматики

Вид работы: контрольная работа

Рубрика: Математика

Размер файла: 127.8 Kb

Скачать файл: referat.me-216031.docx

Краткое описание работы: Вычисление определителя 4-го порядка, математическое решение системы методами матрицы, Крамера и Гаусса. Характеристика понятий невырожденной и обратной, транспонированной и присоединенной матрицы, нахождение алгебраических дополнений элементов таблицы.

Основы высшей матиматики

Федеральное агентство по образованию ГОУ ВПО

Филиал Уральского государственного экономического университета в г. Березники

Кафедра математики и естественных наук

Контрольная работа № 1

по дисциплине: "Математика"

Выполнил:

Студентка I курса,

группы ЭКПС-091

Лоскутова Ирина Петровна

Проверил:

к. ф-м. н., профессор

Кобзев Виктор Николаевич

Березники

2009


Задача 1.1 Вычислить определитель 4-го порядка

Решение. Так как элемент , то 1-ую строку нужно умножить на (– 2) и прибавить ко 2-ой строке; 1-ую строку умножаем на (– 3) и прибавляем к 3-ей строке; 1-ую строку умножаем на (– 4) и прибавляем к 4-ой строке, получаем матрицу:

Ответ: .

Задача 1.2 Решить систему матричным способом

Решение. В матричной форме система имеет вид: (1), где

; ; .


Найдем определитель матрицы А:

.

Так как , то матрица А невырожденная и обратная матрица существует.

Найдем матрицу , транспонированную к А:

.

Найдем алгебраические дополнения к матрице :

;

;

;

;

;

;

;

.

Из алгебраических дополнений элементов матрицы составим присоединенную матрицу :

.

Вычислим обратную матрицу :

.

Проверим правильность вычисления обратной матрицы:


По формуле (1) вычислим:

Ответ:

Проверка:

Þ

Þ Система решена верно.

Задача 1.3 Решить систему методом Крамера

Решение. Найдем определитель системы

Так как , то по теореме Крамера система имеет единственное решение.


;

.

математический матрица невырожденный транспонированный

По формулам Крамера:

;

Ответ: решение системы .

Задача 1.4 Найти общее решение системы, используя метод Гаусса

Решение. Расширенная матрица система имеет вид:

Так как элемент , то 1-ую строку прибавляем ко 2-ой строке, 1-ую строку умножаем на (– 2) и прибавляем к 3-ей строке, 1-ую строку умножаем на 4 и прибавляем к 4ой строке, исключим элемент из всех строк, начиная со второй. Результаты запишем в матрицу:

Так как элемент , то, прибавляем 2-ую строку к 3-ей, умножаем 2-ую строку на (– 2) и прибавляем к 4-ой строке, исключим элемент из 3-ей и 4ой строк. Результаты запишем в матрицу:

Так как элемент , то, умножаем 3-ю строку на (– 1) и прибавляем к 4-ой строке, исключим элемент из 4-ой строки. Результаты запишем в матрицу:

Система уравнений примет вид:

,


– связные элементы, – свободная,

Ответ:

Проверка. Подставим все значения в первое уравнение системы.

Получим:

Þ система решена верно.


Задача 1.5

Даны векторы

, .

Найти: 1) , 2) , 3) , 4) , 5) .

Решение

, .

1) .

2)

.

3) .

4)

Т.к. , то

5) .


Ответ:

1) ,

2) ,

3) ,

4) ,

5) .

Похожие работы

  • Системы линейных уравнений и неравенств

    Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

  • Математика матрица

    Матрицы Матрица - прямоугольная (в частном случае квадратная) таблица с числами. Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.

  • Система уравнений по формулам Крамера

    Задание № 1 Решить систему уравнений: 1) по формулам Крамера 2) с помощью обратной матрицы 3) методом Гаусса Решение найдем определитель матрицы 1) методом Крамера

  • Вычисление обратной матрицы

    Рассмотрим квадратную матрицу Квадратная матрица называется невырожденной , или неособенной , если её определитель отличен от нуля и вырожденной , или

  • Матрицы

    Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.

  • Алгебра матриц. Системы линейных уравнений

    Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

  • Матричная форма формулы Крамера

    С.К. Соболев Матричный способ решения СЛАУ, формулы Крамера, свойство присоединенной матрицы и основное свойство линейной зависимости. Рассмотрим

  • Задачи по Математике

    ЗАДАЧИ КОНТРОЛЬНОЙ РАБОТЫ Задачи № 1-10. Решить систему линейных алгебраических уравнений тремя способами: 1) методом Крамера, 2) с помощью обратной матрицы, 3) методом Гаусса.

  • Алгебра матриц

    Основные понятия. Линейные операции над матрицами. Умножение матриц. Свойства умножения матриц. Вырожденные и невырожденные матрицы.

  • Системы линейных уравнений

    Критерий совместности. Метод Гаусса. Формулы Крамера. Матричный метод.