Название: Основы высшей матиматики
Вид работы: контрольная работа
Рубрика: Математика
Размер файла: 127.8 Kb
Скачать файл: referat.me-216031.docx
Краткое описание работы: Вычисление определителя 4-го порядка, математическое решение системы методами матрицы, Крамера и Гаусса. Характеристика понятий невырожденной и обратной, транспонированной и присоединенной матрицы, нахождение алгебраических дополнений элементов таблицы.
Основы высшей матиматики
Федеральное агентство по образованию ГОУ ВПО
Филиал Уральского государственного экономического университета в г. Березники
Кафедра математики и естественных наук
Контрольная работа № 1
по дисциплине: "Математика"
Выполнил:
Студентка I курса,
группы ЭКПС-091
Лоскутова Ирина Петровна
Проверил:
к. ф-м. н., профессор
Кобзев Виктор Николаевич
Березники
2009
Задача 1.1 Вычислить определитель 4-го порядка
Решение. Так как элемент , то 1-ую строку нужно умножить на (– 2) и прибавить ко 2-ой строке; 1-ую строку умножаем на (– 3) и прибавляем к 3-ей строке; 1-ую строку умножаем на (– 4) и прибавляем к 4-ой строке, получаем матрицу:
Ответ: .
Задача 1.2 Решить систему матричным способом
Решение. В матричной форме система имеет вид: (1), где
;
;
.
Найдем определитель матрицы А:
.
Так как , то матрица А невырожденная и обратная матрица
существует.
Найдем матрицу , транспонированную к А:
.
Найдем алгебраические дополнения к матрице :
;
;
;
;
;
;
;
.
Из алгебраических дополнений элементов матрицы составим присоединенную матрицу
:
.
Вычислим обратную матрицу :
.
Проверим правильность вычисления обратной матрицы:
По формуле (1) вычислим:
Ответ:
Проверка:
Þ
Þ Система решена верно.
Задача 1.3 Решить систему методом Крамера
Решение. Найдем определитель системы
Так как , то по теореме Крамера система имеет единственное решение.
;
.
математический матрица невырожденный транспонированный
По формулам Крамера:
;
Ответ: решение системы .
Задача 1.4 Найти общее решение системы, используя метод Гаусса
Решение. Расширенная матрица система имеет вид:
Так как элемент , то 1-ую строку прибавляем ко 2-ой строке, 1-ую строку умножаем на (– 2) и прибавляем к 3-ей строке, 1-ую строку умножаем на 4 и прибавляем к 4ой строке, исключим элемент
из всех строк, начиная со второй. Результаты запишем в матрицу:
Так как элемент , то, прибавляем 2-ую строку к 3-ей, умножаем 2-ую строку на (– 2) и прибавляем к 4-ой строке, исключим элемент
из 3-ей и 4ой строк. Результаты запишем в матрицу:
Так как элемент , то, умножаем 3-ю строку на (– 1) и прибавляем к 4-ой строке, исключим элемент
из 4-ой строки. Результаты запишем в матрицу:
Система уравнений примет вид:
,
– связные элементы,
– свободная,
Ответ:
Проверка. Подставим все значения в первое уравнение системы.
Получим:
Þ система решена верно.
Задача 1.5
Даны векторы
,
.
Найти: 1) , 2)
, 3)
, 4)
, 5)
.
Решение
,
.
1) .
2)
.
3) .
4)
Т.к. , то
5) .
Ответ:
1) ,
2) ,
3) ,
4) ,
5) .
Похожие работы
-
Системы линейных уравнений и неравенств
Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
-
Математика матрица
Матрицы Матрица - прямоугольная (в частном случае квадратная) таблица с числами. Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.
-
Система уравнений по формулам Крамера
Задание № 1 Решить систему уравнений: 1) по формулам Крамера 2) с помощью обратной матрицы 3) методом Гаусса Решение найдем определитель матрицы 1) методом Крамера
-
Вычисление обратной матрицы
Рассмотрим квадратную матрицу Квадратная матрица называется невырожденной , или неособенной , если её определитель отличен от нуля и вырожденной , или
-
Матрицы
Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.
-
Алгебра матриц. Системы линейных уравнений
Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
-
Матричная форма формулы Крамера
С.К. Соболев Матричный способ решения СЛАУ, формулы Крамера, свойство присоединенной матрицы и основное свойство линейной зависимости. Рассмотрим
-
Задачи по Математике
ЗАДАЧИ КОНТРОЛЬНОЙ РАБОТЫ Задачи № 1-10. Решить систему линейных алгебраических уравнений тремя способами: 1) методом Крамера, 2) с помощью обратной матрицы, 3) методом Гаусса.
-
Алгебра матриц
Основные понятия. Линейные операции над матрицами. Умножение матриц. Свойства умножения матриц. Вырожденные и невырожденные матрицы.
-
Системы линейных уравнений
Критерий совместности. Метод Гаусса. Формулы Крамера. Матричный метод.