Название: Интеграл Пуассона
Вид работы: реферат
Рубрика: Математика
Размер файла: 108.53 Kb
Скачать файл: referat.me-217403.docx
Краткое описание работы: Определение интеграла Пуассона и ядра Пуассона, основные теоремы.
Интеграл Пуассона
Пусть ¦(x ) , g (x ) , x ÎR1 –суммируемые на [-p, p] , 2p- периодические, комплекснозначные функции. Через f * g(x) будем обозначать свертку
f
*
g(x)
=
dt
Из теоремы Фубини легко следует, что свертка суммируемых функций также суммируема на [-p,p] и
cn ( f*g ) = cn ( f )× cn ( g ) , n = 0, ±1 , ±2 , ... ( 1 )
где { cn ( f )} -- коэффициенты Фурье функции f ( x ) :
cn
= -i n t
dt
, n = 0, ±1, ±2,¼
Пусть ¦ Î L1 (-p, p ) . Рассмотрим при 0 £ r < 1 функцию
¦r
( x ) = n
( f ) r|
n
|
ei n x
, x Î [ -p, p ] , ( 2 )
где ряд в правой части равенства (2) сходится равномерно по х для любого фиксированного r , 0 £ r < 1 . Коэффициенты Фурье функции ¦r (х) равны
cn
( fr
) = cn
× r|
n
|
, n = 0 , ±1, ±2, ¼ , а это согласно (1) значит, что ¦r
( x ) можно представить в виде свертки :
¦r
( x ) = , ( 3 )
где
, t Î [ -p, p ] . ( 4 )
Функция двух переменных Рr (t) , 0 £ r <1 , t Î [ -p, p ] , называется ядром Пуассона , а интеграл (3) -- интегралом Пуассона .
Следовательно,
Pr
( t ) = , 0 £ r < 1 , t Î [ -p, p] . ( 5 )
Если ¦Î L1 ( -p, p ) - действительная функция , то , учитывая , что
c-n ( f ) = `cn ( f ) , n = 0, ±1, ±2,¼, из соотношения (2) мы получим :
fr
( x ) =
= , ( 6 )
где
F ( z ) = c0
( f ) + 2 ( z = reix
) ( 7 )
- аналитическая в единичном круге функция . Равенство (6) показывает, что для любой действительной функции ¦Î L1 ( -p, p ) интегралом Пуассона (3) определяется гармоническая в единичном круге функция
u ( z ) = ¦r (eix ) , z = reix , 0 £ r <1 , x Î [ -p, p ] .
При этом гармонически сопряженная с u (z) функция v (z) c v (0) = 0 задается формулой
v (z) = Im F (z) = . ( 8 )
Утверждение1.
Пусть u (z) - гармоническая ( или аналитическая ) в круге | z | < 1+e ( e>0 ) функция и ¦ (x) = u (eix ) , xÎ[ -p, p ] . Тогда
u (z) = ( z = reix
, | z | < 1 ) ( 10 ).
Так как ядро Пуассона Pr (t) - действительная функция, то равенство (10) достаточно проверить в случае, когда u (z) - аналитическая функция:
=
, | z | < 1+ e .
Но тогда
и равенство (10) сразу следует из (2) и (3).
Прежде чем перейти к изучению поведения функции ¦r (x ) при r®1 , отметим некоторые свойства ядра Пуассона:
а) ;
б) ;
в) для любого d>0
Соотношения а) и в) сразу следуют из формулы (5), а для доказательства б) достаточно положить в (2) и (3) ¦ (х) º 1.
Теорема 1.
Для произвольной (комплекснозначной) функции ( -p, p ) , 1 £ p < ¥ , имеет место равенство
;
если же ¦ (x) непрерывна на [ -p, p ] и ¦ (-p) = ¦ (p) , то
.
Доказательство.
В силу (3) и свойства б) ядра Пуассона
( 12 )
Для любой функции , пользуясь неравенством Гельдера и положительностью ядра Пуассона , находим
.
Следовательно,
.
Для данного e > 0 найдем d = d (e) такое, что . Тогда для r , достаточно близких к единице, мы получим оценку
.
Аналогично второе неравенство вытекает из неравенства
.
Теорема 1 доказана.
Дадим определения понятий "максимальная функция" и "оператор слабого типа", которые понадобятся нам в ходе доказательства следующей теоремы.
Определение1.
Пусть функция суммируема на любом интервале (-А, А), А > 0 . Максимальной функцией для функции
называется функция
где супремум берется по всем интервалам I , содержащим точку х.
Определение 2.
Оператор называется оператором слабого типа (р,р) , если для любого y > 0
.
Теорема 2 (Фату).
Пусть - комплекснозначная функция из
. Тогда
для п.в.
.
Доказательство.
Покажем, что для и
, ( 13 )
где С - абсолютная константа , а M ( f, x ) - максимальная функция для f (x) [1] . Для этой цели используем легко выводимую из (5) оценку
(К - абсолютная константа).
Пусть - такое число, что
.
Тогда для
.
Неравенство (13) доказано. Используя затем слабый тип (1,1) оператора , найдем такую последовательность функций
,что
,
( 14 )
для п.в.
.
Согласно (13) при xÎ (-2p,2p)
Учитывая , что по теореме 1 для каждого xÎ [-p, p] и (14)
Из последней оценки получим
при n®¥.
Теорема 2 доказана.
Замечание.
Используя вместо (13) более сильное неравенство (59), которое мы докажем позже, можно показать, что для п.в. xÎ [-p, p] , когда точка reit
стремится к eix
по некасательному к окружности
пути.
[1] Мы считаем , что f (x)
продолжена с сохранением периодичности на отрезок [-2p,2p] (т.е.
f (x) = f (y)
, если x,y
Î [-2p,2p] и x-y=2
p
) и f (x) = 0
, если |x
| > 2p .
Похожие работы
-
Некоторые приложения определенного интеграла в математике
Некоторые приложения определенного интеграла в математике Курсовая работа студента гр. МТ-21 Нургалиев А.З. Павлодарский университет Павлодар 2005 год.
-
Интеграл Пуассона
Пусть –суммируемые на - периодические, комплекснозначные функции. Через
-
Теорема Бернулли Закон распределения Пуассона Критерий Колмогорова
Московский Государственный Авиационный Институт (Технический Университет) Филиал „Взлёт“ Курсовая работа «Теорема Бернулли. Закон распределения Пуассона. Критерий Колмогорова»
-
Расчет поля между эквипотенциальными поверхностями в неоднородной среде в отсутствие объемного заряда
Это типичная ситуация в конденсаторе. Для ее рассмотрения используется уравнение Пуассона с ρ = 0, которое интегрируется с учетом условий φ(x1) = φ1, φ(x2) = φ2 (для плоскостного случая) или φ(r1) = φ1, φ(r2) = &
-
Расчет электрических полей при наличии диэлектриков. Поляризованность. Связанный заряд.
Уравнения Максвелла и уравнение Пуассона применимы при наличии любых диэлектриков. Следует только помнить, что ε может зависеть от координат, и его в общем случае нельзя выносить из-под знака div.
-
Уравнение Пуассона. Его применение для расчета полей в вакууме
В задачах, решаемых аналитически, φ и ρ обычно зависят только от одной координаты. При интегрировании можно вычислять интегралы как неопределенные, не забывая выписывать +const, а затем отдельно находить эти константы.
-
Теория вероятности и математическая статистика
Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
-
Вычисление емкости
Для расчета емкости можно ввести разность потенциалов между обкладками, решить уравнение Пуассона, найти D на обкладках, а затем плотность поверхностного заряда обкладок σ = ± Dn (Dn - это Dx или Dr у обкладки).
-
Расчет поляризованности и плотности связанного заряда
Такие задачи могут быть решены как с привлечением теоремы Гаусса, так и посредством интегрирования уравнения Пуассона. Уравнение Пуассона более удобно, если где-либо требуется обеспечить наперед заданные величины потенциала.
-
Законы распределения случайных величин. Доверительный интервал
Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.