Referat.me

Название: Определитель матрицы 2

Вид работы: реферат

Рубрика: Математика

Размер файла: 194.93 Kb

Скачать файл: referat.me-217906.docx

Краткое описание работы: Оглавление Задача 2 3 Задача 3 5 Задача 4 7 Задача 1 Вычислить определитель 4-го порядка. Решение: Определитель 4-го порядка находится по формуле: aij – элемент матрицы;

Определитель матрицы 2

Оглавление

Задача 1

Задача 2

Задача 3

Задача 4

Задача 5


Задача 1

Вычислить определитель 4-го порядка.

Решение:

Определитель 4-го порядка находится по формуле:

,

где

aij – элемент матрицы;

Мij – минора элемента aij . Минора элемента aij матрицы А называется определитель матрицы, которая была получена путем удаления из матрицы А строк и столбцов, которые содержат элемент aij

Задача 2

Решить систему матричным способом.

Решение:

1. Введем обозначения:

Тогда в матричной форме система имеет вид , т.е.

А-1 -обратная матрица, которая существует только тогда, когда исходная матрица А невырожденная, т.е.

2. Найдем определитель матрицы по формуле:

Так как , то матрица А – невырожденная и обратная матрица А-1 существует и единственная.

3. Найдем обратную матрицу по формуле:

, где

- присоеденненая матрица, элементы которой равны алгебраическим дополнениям элементов матрицы , и затем транспонированная.

a. найдем алгебраического дополнения всех элементов матрицы:

Получается матрица

b. транспонируем матрицу (т.е. матрица AT , полученная из исходной матрицы заменой строк на столбцы)

c. обратная матрица равна:

4. Находим значение переменных х123 :

Х1 =-27, Х2 =36, Х3 =-9

Задача 3

Решить систему методом Крамера

Решение:

Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно)

1. Данную систему представим в виде матрицы:

2. Найдем определители:

,

(, т.е. можно применить метод Крамера)

;

.

3. Найдем значение x, y:

,

,

Задача 4

Найти общее решение системы, используя метод Жордана-Гаусса:

Решение:

Данную систему представим в виде матрицы:

Шаг 1.

В качестве разрешающего элемента удобнее взять элемент а11 =1 (т.к. при делении на «1» число остается без изменения). Делим элементы строки на разрешающий элемент а11 . Разрешающие переменную х1 следует исключить из остальных уравнений, поэтому в новой матрице в первом столбце во всех строках (кроме 1 строки) необходимо поставить значение «0». Другие элементы новой матрицы находим по правилу прямоугольника:


;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

Шаг 2.

В полученной матрице в качестве разрешающего элемента берем не равный нулю элемент из любой строки, кроме первой, например а22 =5. Делим элементы разрешающей второй строки на «5». Все элементы первого столбца, кроме а11 берем равные «0», а остальные элементы находим по правилу прямоугольника:

; ;

; ;

;

Шаг 3.


В полученной матрице в качестве разрешающего элемента берем не равный нулю элемент из любой строки, кроме первой и второй, например а33 =1. Делим элементы разрешающей второй строки на «1». Все элементы первого и второго столбца, кроме а11 =1 и а22 =1 берем равные «0», а остальные элементы находим по правилу прямоугольника:

;

;

;

Шаг 4.

Так как больше строк в качестве разрешающих не осталось, выписываем систему уравнений, которая соответствует последней матрице:

Предполагаем, что х4 – это любое число С, тогда

Х1 =3,8-3,4С; Х2 =23,6-7,8С; Х3 =-33+С

Задача 5

Даны векторы.

Найти:

Решение:

Вектором называется направленный отрезок АВ с начальной точкой А и конечной точкой В.

Из данных уравнений выделим координаты векторов:

, где координатами являются (x,y,z)

т.е. координатами вектора являются (18,2,1), а координатами вектора являются (1,-2,17).

1. Скалярное произведение векторов находится по формуле:

2. Длина вектора определяется по формуле:

Похожие работы

  • Теорема Лапласа

    Теоре?ма Лапла?са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 — 1827), которому приписывают формулирование этой теоремы в 1772 году.

  • Математика матрица

    Матрицы Матрица - прямоугольная (в частном случае квадратная) таблица с числами. Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.

  • Вычисление обратной матрицы

    Рассмотрим квадратную матрицу Квадратная матрица называется невырожденной , или неособенной , если её определитель отличен от нуля и вырожденной , или

  • Определители

    Муниципальное образовательное учреждение – гимназия № 47 Реферат по математике ученицы 8 г класса Годуновой Екатерины г.Екатеринбург, 2000г. Введение

  • Матрицы

    Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.

  • Решение матриц

    Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.

  • Алгебра матриц. Системы линейных уравнений

    Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

  • Метод Крамера

    Министерство рыбного хозяйства Владивостокский морской колледж ТЕМА: “ Системы 2-х , 3-х линейных уравнений. Правило Крамера. ” г. Владивосток

  • по линейной алгебре

    Министерство образования РФ Московский государственный университет сервиса Региональный институт сервиса Контрольная работа по математике Выполнил студент 1 курса

  • Основы высшей матиматики

    Вычисление определителя 4-го порядка, математическое решение системы методами матрицы, Крамера и Гаусса. Характеристика понятий невырожденной и обратной, транспонированной и присоединенной матрицы, нахождение алгебраических дополнений элементов таблицы.