Название: Определитель матрицы 2
Вид работы: реферат
Рубрика: Математика
Размер файла: 194.93 Kb
Скачать файл: referat.me-217906.docx
Краткое описание работы: Оглавление Задача 2 3 Задача 3 5 Задача 4 7 Задача 1 Вычислить определитель 4-го порядка. Решение: Определитель 4-го порядка находится по формуле: aij – элемент матрицы;
Определитель матрицы 2
Оглавление
Задача 1
Задача 2
Задача 3
Задача 4
Задача 5
Задача 1
Вычислить определитель 4-го порядка.
Решение:
Определитель 4-го порядка находится по формуле:
,
где
aij – элемент матрицы;
Мij – минора элемента aij . Минора элемента aij матрицы А называется определитель матрицы, которая была получена путем удаления из матрицы А строк и столбцов, которые содержат элемент aij
Задача 2
Решить систему матричным способом.
Решение:
1. Введем обозначения:
Тогда в матричной форме система имеет вид , т.е.
А-1
-обратная матрица, которая существует только тогда, когда исходная матрица А невырожденная, т.е.
2. Найдем определитель матрицы по формуле:
Так как , то матрица А – невырожденная и обратная матрица А-1
существует и единственная.
3. Найдем обратную матрицу по формуле:
, где
- присоеденненая матрица, элементы которой
равны алгебраическим дополнениям элементов матрицы
, и затем транспонированная.
a. найдем алгебраического дополнения всех элементов матрицы:
Получается матрица
b. транспонируем матрицу (т.е. матрица AT , полученная из исходной матрицы заменой строк на столбцы)
c. обратная матрица равна:
4. Находим значение переменных х1 ,х2 ,х3 :
Х1 =-27, Х2 =36, Х3 =-9
Задача 3
Решить систему методом Крамера
Решение:
Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно)
1. Данную систему представим в виде матрицы:
2. Найдем определители:
,
(, т.е. можно применить метод Крамера)
;
.
3. Найдем значение x, y:
,
,
Задача 4
Найти общее решение системы, используя метод Жордана-Гаусса:
Решение:
Данную систему представим в виде матрицы:
Шаг 1.
В качестве разрешающего элемента удобнее взять элемент а11
=1 (т.к. при делении на «1» число остается без изменения). Делим элементы строки на разрешающий элемент а11
. Разрешающие переменную х1
следует исключить из остальных уравнений, поэтому в новой матрице в первом столбце во всех строках (кроме 1 строки) необходимо поставить значение «0». Другие элементы новой матрицы находим по правилу прямоугольника:
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
Шаг 2.
В полученной матрице в качестве разрешающего элемента берем не равный нулю элемент из любой строки, кроме первой, например а22 =5. Делим элементы разрешающей второй строки на «5». Все элементы первого столбца, кроме а11 берем равные «0», а остальные элементы находим по правилу прямоугольника:
;
;
;
;
;
Шаг 3.
В полученной матрице в качестве разрешающего элемента берем не равный нулю элемент из любой строки, кроме первой и второй, например а33 =1. Делим элементы разрешающей второй строки на «1». Все элементы первого и второго столбца, кроме а11 =1 и а22 =1 берем равные «0», а остальные элементы находим по правилу прямоугольника:
;
;
;
Шаг 4.
Так как больше строк в качестве разрешающих не осталось, выписываем систему уравнений, которая соответствует последней матрице:
Предполагаем, что х4 – это любое число С, тогда
Х1 =3,8-3,4С; Х2 =23,6-7,8С; Х3 =-33+С
Задача 5
Даны векторы.
Найти:
Решение:
Вектором называется направленный отрезок АВ с начальной точкой А и конечной точкой В.
Из данных уравнений выделим координаты векторов:
, где координатами являются (x,y,z)
т.е. координатами вектора являются (18,2,1), а координатами вектора
являются (1,-2,17).
1. Скалярное произведение векторов находится по формуле:
2. Длина вектора
определяется по формуле:
Похожие работы
-
Теорема Лапласа
Теоре?ма Лапла?са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 — 1827), которому приписывают формулирование этой теоремы в 1772 году.
-
Математика матрица
Матрицы Матрица - прямоугольная (в частном случае квадратная) таблица с числами. Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.
-
Вычисление обратной матрицы
Рассмотрим квадратную матрицу Квадратная матрица называется невырожденной , или неособенной , если её определитель отличен от нуля и вырожденной , или
-
Определители
Муниципальное образовательное учреждение – гимназия № 47 Реферат по математике ученицы 8 г класса Годуновой Екатерины г.Екатеринбург, 2000г. Введение
-
Матрицы
Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.
-
Решение матриц
Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.
-
Алгебра матриц. Системы линейных уравнений
Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
-
Метод Крамера
Министерство рыбного хозяйства Владивостокский морской колледж ТЕМА: “ Системы 2-х , 3-х линейных уравнений. Правило Крамера. ” г. Владивосток
-
по линейной алгебре
Министерство образования РФ Московский государственный университет сервиса Региональный институт сервиса Контрольная работа по математике Выполнил студент 1 курса
-
Основы высшей матиматики
Вычисление определителя 4-го порядка, математическое решение системы методами матрицы, Крамера и Гаусса. Характеристика понятий невырожденной и обратной, транспонированной и присоединенной матрицы, нахождение алгебраических дополнений элементов таблицы.